Skip to main content

Impact of Biotic, Abiotic Stressors: Biotechnologies for Alleviating Plant Stress

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses

Abstract

The past two decades have seen tremendous increase in scientific research exploring stress related impacts on plants and various methods to alleviate stress. More and more scientific proof was accumulated pertaining to molecular changes in plants when subjected to stress. Stress associated genes and regulatory elements, the path ways involved in cross talk of biotic and abiotic stress responses and strategies to engineer plants for stress tolerance. However, stress is still a global issue bothering agriculturist’s worldwide. Stress associated yield declines to an order of even 80 %, were reported in principal crops from several studies and from different parts of the globe. Plant stress biotechnology is presently being re-examined with new age high-throughput tools. Empowered with omics data, transgenics research is being taken to the next level where desired response can be tailored with maximum efficiency. The chapter presents a consolidated review on the physiological and molecular changes that occur in plants in response to different stressors and the mechanisms of adaptation. The principal focus of the chapter is to present a balanced representation of different scientific studies both at physiological and molecular level, engaged in alleviating stress related impairments in plants. The chapter has one complete section devoted to advances in omics research and how they are becoming instrumental in determining the future landscape of stress tolerance and adaptations in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado‐Santacruz GA (2006) Genetic manipulation of plants for increased drought tolerance. In: Guevara‐González R, Torres-Pacheco I. (eds.) Advances in agricultural and food biotechnology, Research Signpost, Kerala pp 71–97

    Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997). Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. The Plant Cell Online 9(9):1559–1572

    Google Scholar 

  • Allan AC, Fluhr R (2007) Ozone and Reactive Oxygen Species. Encyclopedia of Life Sciences, doi:10.1038/npg.els.0001299

  • Allen HK, Moe LA, Gaarder A, Rodbumrer J, Handelsman J (2008) Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME j 3(2):243–251

    Article  Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: Scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell & Dev Biol-Plant 39(2):75–84

    Google Scholar 

  • Altman A (1999) Plant biotechnology in the 21st century: the challenges ahead. Electron J Biotechnol 2(2):1–2

    Article  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of Pea (Pisum sativum L.). Pedosphere 18(5):611–620

    Article  Google Scholar 

  • Baisakh N, Rao MVR, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J 10:453–464

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Hurry VM, Kelley SE, Osmond CB, Robinson SA, Rohozinski J, Seaton GGR and Sims DA(1997) Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol Plant 100(2):203–213

    Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4(6):378–383

    CAS  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, Delucia EH (2010) Biotic stress globally down regulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Carmen B, Roberto D (2011) Soil bacteria support and protect plants against. In: Shaker A (ed) Abiotic stresses, abiotic stress in plants—mechanisms and adaptations, Chapter 16, ISBN: 978‐953‐307‐394‐1

    Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chang CC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Karpiński S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150(2):670–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: A challenging relationship. Plant Stress 1(1):4–15

    Google Scholar 

  • Cline WR (2007) Global warming and agriculture: impact estimates by country, Washington, DC, USA: Center for Global Development and Peterson Institute for International Economics

    Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10(5):481–489

    Article  PubMed  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Over expression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418(11):203–206

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  PubMed  CAS  Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, Santos D, Fevereiro P, Araújo SS (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive, In: Vahdati K (ed) Abiotic stress—plant responses and applications in agriculture, ISBN: 978‐953‐51‐1024‐8, InTech, doi:10.5772/52779

  • FAO Report (2007) Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. Food and Agriculture Organization of the United Nations, Rome, Italy. www.fao.org/Clim/

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16(10):449–455

    Article  PubMed  CAS  Google Scholar 

  • Fraire‐Velázquez S, Rodríguez S, Sánchez‐Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker AK Venkateswarlu B (eds) Abiotic stress response in plants—physiological, biochemical and genetic perspectives, InTechJanezaTrdine 9, 51000 Rijeka, Croatia

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, De Graff PTHM, Poels J, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grover M, Ali SKZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1(3):210–215

    Google Scholar 

  • Handelsman J, Tiedje J, Alvarez-Cohen L, Ashburner M, Cann IKO, Delong EF, Schmidt TM (2007) The new science of metagenomics: revealing the secrets of our microbial planet. National Academy of Sciences, Washington DC. ISBN 13: 978-0-309-10676-4

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6(5):6–11

    Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlind JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sinica 46:1–10

    CAS  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27(2):297–306

    Article  PubMed  CAS  Google Scholar 

  • IPCC Report (2012) Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Intergovernmental panel on climate change 2012 (IPCC 2012), Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press,Cambridge

    Google Scholar 

  • ISAAA (2008) International service for the acquisition of agri‐biotech applications. Biotechnology for the development of drought tolerant crops. http://www.isaaa.org/kc. Water agriculture. Pocket K No. 32

  • Iuchi S, Kobayshi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333

    Article  PubMed  CAS  Google Scholar 

  • James C (2003) Global review of commercialized transgenic crops. Curr Sci 84(3):303–309

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No.43, ISAAA: Ithaca, NY. ISBN: 978‐1‐892456‐52‐4

    Google Scholar 

  • Jacquiod S, Franqueville L, Cecillon S, Vogel TM, Simonet P (2013) Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS ONE 8(11):e79699. doi:10.1371/journal.pone.0079699

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang S, Liang X, Li X, Wang S, Lv D, Ma C, Li X, Ma X, Yan Y (2012) Wheat drought- responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. Int J Mol Sci 13:16065–16083. doi:10.3390/ijms131216065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jobbagy E, Jackson R (2004) Groundwater use and salinization with grassland afforestation. Global Change Biol 10:1299–1312

    Google Scholar 

  • Joshi K (2009) GM crops: potential for second green revolution? In: Banerjee P (ed) India, science and technology: 2008, NISTADS, New Delhi. http://www.nistads.res.in/indiasnt2008/t6rural/t6rur20.htm

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agric Soc Sci 2(4):216–218

    Google Scholar 

  • Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS (2010) Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol 76(15):5321–5326

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu JH, Honda C, Moriguchi T (2006) Involvement of polyamine in floral and fruit development. Japan Agric Res Q 40(1):51–58

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2(5):643–654

    Article  CAS  Google Scholar 

  • Mathur PB, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  Google Scholar 

  • Mayak S, Tirosha T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  PubMed  CAS  Google Scholar 

  • Mazars C, Thuleau P, Lamotte O, Bourque S (2010) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3(4):706–718

    Article  PubMed  CAS  Google Scholar 

  • McDonald K (2011) Climate change and agricultural production. http://www.bigpictureagriculture.com/2011/11/climate-change-and-agricultural.html

  • Medeiros FHV, Souza RM, Medeiros FCL, Zhang H, Wheeler T, Payton P, Ferro HM, Paré PW (2011) Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant Soil 347:327–337

    Article  CAS  Google Scholar 

  • Miller J (2007) Genetically modifying plants to have increased tolerance to abiotic stress: microbiology and molecular genetics. Basic Biotechnol eJ 3:117–122

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125(4):1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Naz I, Bano A, Tamoor‐Ul‐Hassan (2009). Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. African J Biotechnol 8(21):5762–5766

    Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283(14):8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim Y, Nahm B, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(1):341–351

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parmar P, Dave B, Sudhir A, Panchal K, Subramanian RB (2013) Physiological, biochemical and molecular response of plants against heavy metals stress. Int J Curr Res 5(01):080–089

    Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross- tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129(2):460–468

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin‐mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water‐stress. Plant Biotechnol J pp 1–12. doi: 10.1111/j.1467-7652.2010.00584.x

  • Pellegrineschi A, Reynolds M, Pacheco M, Maria R, Almeraya BR, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Courtois B (1999) Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul 29(1–2):123–133

    Article  CAS  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol 48(5–6):683–695

    Article  PubMed  CAS  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  PubMed  Google Scholar 

  • Rincon A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701

    Article  PubMed  CAS  Google Scholar 

  • Roberson E, Firestone M (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10(1):1–22

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Gentic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Šamajová O, líhal OP, Al-Yousif M, Hirt H, Šamaj J (2012) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.12.002

    Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584

    Article  PubMed  CAS  Google Scholar 

  • Spinelli F, Cellini A, Marchetti L, Nagesh KM Piovene C (2011) Emission and function of volatile organic compounds in response to abiotic stress. In: Shanker A (ed) Abiotic stress in plants—mechanisms and adaptations, InTech Publisher, Croatia, Chapter 16, ISBN: 978‐953‐307‐394‐1

    Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Nat Acad Sci USA 95:14570–14575

    Google Scholar 

  • Sundari SK Mishra N (2013) Plant growth promoting microorganisms and their role in sustainable agricultural practice. In: Miransari M (ed), Soil Microbiology and Biotechnology, Studium Press LLC, Houstan, Texas, Chapter 12, ISBN: 1‐626990‐14‐X

    Google Scholar 

  • Sundari SK, Gupta AK, Chaddha R, Shah R (2013). Methods to study molecular and functional diversity of soil microbes and significance of microbial biodiversity for sustainable soil management. In: Miransari M (ed) Soil Microbiology and Biotechnology, Studium Press LLC, Houstan, Texas, Chapter 1, ISBN: 1‐626990‐14‐X

    Google Scholar 

  • Sundari SK, Nandini KE (2013) A systematic study of advances in plant‐stress biotechnology, processes involved and approaches for countering stress. In: Miransari M (ed) Stress and Plant Biotechnology. Studium Press LLC, Houstan, Texas, Chapter 4, ISBN: 1‐626990‐31‐X

    Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 5(2):89–97

    Article  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12(11):951–959

    Article  PubMed  CAS  Google Scholar 

  • Tippmann HF, Schluter US, Collinge DB (2006) Common themes in biotic and abiotic stress signaling in plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 3. Global Science Books, London, pp 52–67

    Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol. doi: 10.1007/s00284-009-9464-1

  • Van Elsas JD, Costa R, Jansson J, Sjöling S, Bailey M, Nalin R, Van Overbeek L (2008a) The metagenomics of disease-suppressive soils–experiences from the METACONTROL project. Trends Biotechnol 26(11):591–601

    Article  PubMed  Google Scholar 

  • Van Elsas JD, Speksnijder AJ, Van Overbeek LS (2008b) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Methods 75(3):515–522

    Article  PubMed  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54(2):226–230

    Google Scholar 

  • Vijila K, Jebaraj S (2008) Studies on the improvement of rhizobium-green gram (Vigna radiata (L.) Wilczek) symbiosis in low nutrient, acid stress soils. Legume Res 31(2):126–129

    Google Scholar 

  • Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91(2):107–109

    Article  CAS  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM et al (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promoter in hydroponically grown tomatoes under saline conditions. Acta Horticulturae 659:363–369

    Google Scholar 

  • Yang JW, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microb Interact 21(6):737–744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishna Sundari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sundari, S.K. (2014). Impact of Biotic, Abiotic Stressors: Biotechnologies for Alleviating Plant Stress. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_6

Download citation

Publish with us

Policies and ethics