Skip to main content

Mycorrhizal Fungi to Alleviate Compaction Stress on Plant Growth

  • Chapter
  • First Online:
Book cover Use of Microbes for the Alleviation of Soil Stresses

Abstract

Plants are subjected to different kinds of stress such as salinity, drought, heavy metals, and compaction. Different methods have been used to alleviate the stress of compaction including the nonbiological ones. However, because such methods are laborious and expensive, the use of biological methods such as using arbuscular mycorrhizal (AM) fungi has also been tested. AM fungi are the soil fungi, which are able to establish a symbiotic association with their host plant and significantly increase its growth by enhancing the uptake of water and nutrients. The use of mycorrhizal fungi has been tested under different types of stress and been proved to be effective. However, data related to the use of AM fungi under compaction are little. Due to the unfavorable properties of soil as a result of using agricultural machinery, especially at high moisture, the soil properties will be unfavorable to the growth and activity of microbes and plant under compaction. It has been indicated that mycorrhizal fungi are able to alleviate the stress of compaction on the growth of the host plant, by increasing the uptake of water and nutrients. The extensive hyphal network, resulted by the growth of fungal spores, can significantly increase plant potential to absorb water and nutrients under stress. Some of the latest development in the use of mycorrhizal fungi on the alleviation of compaction have been presented and anlayzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New York, p 184. ISBN 0521335310

    Google Scholar 

  • Amato M, Ritchie JT (2002) Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure. Crop Sci 42:773–780

    Article  Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. Adv Bot Res 43:209–257

    Article  CAS  Google Scholar 

  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    Article  PubMed  CAS  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    Article  PubMed  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng LY, Bucciarelli B, Liu JQ et al (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chiou T-J (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Ann Rev Plant Biol 62:185–206

    Article  CAS  Google Scholar 

  • Clark RB, Zeto S (2002) Arbuscular mycorrhiza: mineral nutrient and water acquisition. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhiza, interactions in plants, rhizosphere and soils. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 159–188

    Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85:921–928

    Article  CAS  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter A (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Jiang CF, Gao X, Liao L, Harberd NP, Fu XD (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin–DELLA signaling pathway in Arabidopsis. Plant Physiol 145:1460–1470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mahaveer PS, Singh R, Adholeya A (2000) Laboratory manual for basic techniques in arbuscular mycorrhizal research. Center for Mycorrhizal Research. Tata Energy Research Institute, New Delhi

    Google Scholar 

  • Martin AC, Del Pozo JC, Iglesias J et al (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biol 12:563–569 (Review article)

    PubMed  CAS  Google Scholar 

  • Miransari M (2011a) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930 (Review article)

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011b) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885 (Review article)

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011c) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81 (Review article)

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2013a) Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhizal fungi. J Plant Nutr 12:853–1867

    Google Scholar 

  • Miransari M (2013b) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084

    Article  CAS  Google Scholar 

  • Miransari M (2014) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, p 269. ISBN 978-1-4614-9465-2

    Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Article  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)–Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2006) Evaluating the effects of arbuscular mycorrhizae on corn nutrient uptake and yield in a compacted soil. Iran J Soil Water (In Persian, Abstract in English) 20:106–121

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Miransari et al (2013) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol

    Google Scholar 

  • Nadian H, Smith S, Alston A, Murray R (1997) Effects of soil compaction on plant growth phosphorus uptake and morphological characteristics of vesicular–arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol 135:303–311

    Article  Google Scholar 

  • Nadian H, Smith S, Alston A, Murray R, Siebert B (1998) Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicular–arbuscular mycorrhizal fungi. New Phytol 14:155–165

    Article  Google Scholar 

  • Niu YF, Chai RS, Dong HF, Wang H, Tang CX, Zhang YS (2012) Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. J Exp Bot 64:355–367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–454

    Article  PubMed  CAS  Google Scholar 

  • Pupin B, da Silva Freddi O, Nahas E (2009) Microbial alterations of the soil influenced by induced compaction. Revista Brasileira de Ciência do Solo 33:1207–1213

    Article  CAS  Google Scholar 

  • Ramos AC, Martins MA, Okorokova-Façanha AL, Olivares FL, Okorokov LA, Sepúlveda N, Feijó JA, Façanha AR (2009) Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza 19:69–80

    Article  PubMed  CAS  Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122

    Article  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  PubMed  CAS  Google Scholar 

  • Sauerbeck DR, Helal HM (1986). Plant root development and photosynthetic consumption depending on soil compaction. In: Transactions of the 13th congress of the international society of soil science, vol. 3. Hamburg, West Germany, p 948

    Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–287

    Article  Google Scholar 

  • Schüβler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  CAS  Google Scholar 

  • Shane MW, De Vos M, De Roock S, Lambers H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273

    Article  CAS  Google Scholar 

  • Smit BA, Neuman DS, Stachowiack MI (1989) Root hypoxia reduces leaf growth. Role of factors in the transpiration stream. Plant Physiol 92:1021–1028

    Article  Google Scholar 

  • Smith S, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor JH, Waltenbaugh A, Shields M (2008) Impact of vesicular arbuscular mycorrhiza on root anatomy in Zea mays and Lycopersicon esculentum. Afr J Agric Res 3:1–6

    Google Scholar 

  • Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37:801–814

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang XM, Du GK, Wang XM et al (2010) The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. Plant Cell Physiol 51:380–394

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Lynch JP, Brown KM (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J Exp Bot 54:2351–2361

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miransari, M. (2014). Mycorrhizal Fungi to Alleviate Compaction Stress on Plant Growth. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_10

Download citation

Publish with us

Policies and ethics