Skip to main content

In Situ Methods for Identifying the Stem Cell of the Normal and Cancerous Breast

  • Chapter
  • First Online:
Techniques and Methodological Approaches in Breast Cancer Research

Abstract

Stem cells are unspecialized cells with the ability of self-renewal, a high potential for proliferation, and the ability to become a variety of cell types in the body. There are basically four types of stem cells: Embryonic stem cells, which are isolated from the inner cell mass of blastocysts; adult stem cells, which are found in various tissues including umbilical cord blood, bone marrow, mammary, brain, endothelium, etc.; amniotic stem cells, which are found in amniotic fluid; and inducible pluripotent stem cells—reprogrammed cells (e.g. epithelial cells) given pluripotent capabilities. Mammary stem cells belong to adult stem cells; these cells provide the source of cells for the growth of the mammary gland during puberty and gestation. Single such cells can give rise to both luminal and myoepithelial cell types within the gland, and have the ability to regenerate the entire organ in mice. The practical definition of a stem cell is the functional definition—a cell that has the potential of self-renewal and to regenerate tissue over a lifetime. The stem cell markers used are genes or products used to isolate and identify stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Shipitsin M, Polyak K (2008) The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 88(5):459–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gutiérrez PJ, Russo IH, and Russo J (2012) The evolution of the use of mathematics in cancer research. Springer New York, pp 66-102, pp 130–141

    Google Scholar 

  3. Ginestier C, Hur MH et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Park SY, Lee HE et al (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16(3):876–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hwang-Verslues WW, Kuo WH et al (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4(12):e8377

    Article  PubMed Central  PubMed  Google Scholar 

  6. Shackleton M, Vaillant F et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    Article  CAS  PubMed  Google Scholar 

  7. Zhang M, Behbod F et al (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68(12):4674–4682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sleeman KE, Kendrick H et al (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jones C, Mackay A et al (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64(9):3037–3045

    Article  CAS  PubMed  Google Scholar 

  10. Kristiansen G, Winzer KJ et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913

    CAS  PubMed  Google Scholar 

  11. Al-Hajj M, Wicha MS et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Perrone G, Gaeta LM et al (2012) In situ identification of CD44+/CD24- cancer cells in primary human breast carcinomas. PLoS One 7(9):e43110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zhao X, Malhotra GK et al (2010) Telomerast—immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci USA 107(32):14146–14151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lim E, Vaillant F et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  CAS  PubMed  Google Scholar 

  16. Aguiar FN, Mendes HN et al (2013) Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics (Sao Paulo) 68(5):638–643

    Article  Google Scholar 

  17. Cimino A, Halushka M et al (2010) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123(3):701–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Naylor MJ, Li N et al (2005) Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol 171(4):717–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dos Santos PB, Zanetti JS et al (2012) Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn Pathol 7:104

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yao ES, Zhang H et al (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67(2):659–664

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez MA, Pinder SE et al (1999) An immunohistochemical examination of the expression of E-cadherin, alpha- and beta/gamma-catenins, and alpha2- and beta1-integrins in invasive breast cancer. J Pathol 187(5):523–529

    Article  CAS  PubMed  Google Scholar 

  22. Zutter MM, Mazoujian G et al (1990) Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol 137(4):863–870

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Asselin-Labat ML, Sutherland KD et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9(2):201–209

    Article  CAS  PubMed  Google Scholar 

  24. Lo PK, Kanojia D et al (2012) CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene 31(21):2614–2626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vaillant F, Asselin-Labat ML et al (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68(19):7711–7717

    Article  CAS  PubMed  Google Scholar 

  26. Liao MJ, Zhang CC et al (2007) Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 67(17):8131–8138

    Article  CAS  PubMed  Google Scholar 

  27. Stingl J, Eirew P et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    CAS  PubMed  Google Scholar 

  28. Pommier SJ, Hernandez A et al (2012) Fresh surgical specimens yield breast stem/progenitor cells and reveal their oncogenic abnormalities. Ann Surg Oncol 19(2):527–535

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cariati M, Naderi A et al (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122(2):298–304

    Article  CAS  PubMed  Google Scholar 

  30. Meyer MJ, Fleming JM et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70(11):4624–4633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Theresa Nguyen for TMA preparation and IHC staining; Nathan Hopfinger for extracting images and analyses; Fritzi Thomas, Joseph Silverberg, Viviana Serrato, Riddhi Amin, Edward Wadell, Victoria Hall, Courtney Michner and Cameron Jeffers for the quantification of the staining. We also acknowledge the histopathology facility at FCCC for the scanning of the slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Russo M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Su, Y., Diez, P.J.G., Santucci-Pereira, J., Russo, I.H., Russo, J. (2014). In Situ Methods for Identifying the Stem Cell of the Normal and Cancerous Breast. In: Techniques and Methodological Approaches in Breast Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0718-2_6

Download citation

Publish with us

Policies and ethics