Skip to main content

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS,volume 7))

Abstract

Next-generation sequencing technologies have pushed the envelope beyond the primary goal of identifying the sequence of nucleotides within a given DNA molecule to a whole new multitude of applications. In this chapter, we describe select novel applications of next-generation sequencing in relation to large-scale sequencing-based projects, cell and cell compartments sequencing and disease-targeted sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyrpides NC (1999) Genomes OnLine Database (GOLD 1.0): a monitor of complete and ongoing genome projects world-wide. Bioinformatics 15 (9):773-774. doi:btc112

    Article  PubMed  CAS  Google Scholar 

  2. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T et al. (2012) The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40 (Database issue):D571-579. doi:10.1093/nar/gkr1100

  3. Yamey G (2000) Scientists unveil first draft of human genome. BMJ 321 (7252):7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Michelizzi VN, Dodson MV, Pan Z, Amaral ME, Michal JJ et al. (2010) Water buffalo genome science comes of age. Int J Biol Sci 6 (4):333-349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Edwards CJ, Magee DA, Park SD, McGettigan PA, Lohan AJ et al. (2010) A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLoS One 5 (2):e9255. doi:10.1371/journal.pone.0009255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43 (10):956-963. doi:10.1038/ng.911

    Article  PubMed  CAS  Google Scholar 

  7. Matsumoto T, Wu J, Antonio BA, Sasaki T (2008) Development in rice genome research based on accurate genome sequence. Int J Plant Genomics 2008:348621. doi:10.1155/2008/348621

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP et al. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309 (5741):1728-1732. doi:1117389

    Google Scholar 

  9. Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J et al. (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723. doi:10.1186/1471-2164-11-723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Ren X, Yang F, Hu Y, Zhang T, Liu L et al. (2013) Full genome of influenza A (H7N9) virus derived by direct sequencing without culture. Emerg Infect Dis 19 (11):1881-1884. doi:10.3201/eid1911.130664

    Article  PubMed Central  PubMed  Google Scholar 

  11. Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA et al. (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462. doi:10.1186/1471-2164-11-462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wang H, Zou Z, Wang S, Gong M (2013) Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L. PLoS One 8 (12):e82817. doi:10.1371/journal.pone.0082817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lai CC, Yeh YH, Hsieh WP, Kuo CT, Wang WC et al. (2013) Whole-Exome Sequencing to Identify a Novel LMNA Gene Mutation Associated with Inherited Cardiac Conduction Disease. PLoS One 8 (12):e83322. doi:10.1371/journal.pone.0083322

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P et al. (2013) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. doi:gr.164749.113

    Google Scholar 

  15. Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC (2013) Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species. PLoS One 8 (11):e80422. doi:10.1371/journal.pone.0080422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Marinov GK, Kundaje A, Park PJ, Wold BJ (2013) Large-Scale Quality Analysis of Published ChIP-seq Data. G3 (Bethesda). doi:g3.113.008680v1

    Google Scholar 

  17. Milavetz B, Kallestad L, Woods E, Christensen K, Gefroh A et al. (2013) Erratum: Transcription and replication result in distinct epigenetic marks following repression of early gene expression. Front Genet 4:259. doi:10.3389/fgene.2013.00259

    Article  PubMed  Google Scholar 

  18. Helmy M, Sugiyama N, Tomita M, Ishihama Y (2012) Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics. Genes Cells 17 (8):633-644. doi:10.1111/j.1365-2443.2012.01615.x

    Article  PubMed  CAS  Google Scholar 

  19. Helmy M, Tomita M, Ishihama Y (2012) Peptide identification by searching large-scale tandem mass spectra against large databases: bioinformatics methods in proteogenomics. Genes Genome Genomics 6:76-85

    Google Scholar 

  20. Clement JA, Toulza E, Gautier M, Parrinello H, Roquis D et al. (2013) Private Selective Sweeps Identified from Next-Generation Pool-Sequencing Reveal Convergent Pathways under Selection in Two Inbred Schistosoma mansoni Strains. PLoS Negl Trop Dis 7 (12):e2591. doi:10.1371/journal.pntd.0002591

    Article  PubMed Central  PubMed  Google Scholar 

  21. Damerla RR, Chatterjee B, Li Y, Francis RJ, Fatakia SN et al. (2013) Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis. Mamm Genome. doi:10.1007/s00335-013-9494-7

    PubMed  Google Scholar 

  22. Helmy M, Sugiyama N, Tomita M, Ishihama Y (2010) Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing. Genome Biol 11. doi:10.1186/Gb-2010-11-S1-P17

  23. Patel L, Parker B, Yang D, Zhang W (2013) Translational genomics in cancer research: converting profiles into personalized cancer medicine. Cancer Biol Med 10 (4):214-220. doi:10.7497/j.issn.2095-3941.2013.04.005

    PubMed Central  PubMed  Google Scholar 

  24. Chang F, Li MM (2013) Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet. doi:S2210-7762(13)00142-7

    Google Scholar 

  25. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52 (4):413-435. doi:10.1007/s13353-011-0057-x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:640. doi:10.1038/msb.2012.61

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nature Reviews Genetics Article Serie (2009) Applications of next-generation sequencing. http://www.nature.com/nrg/series/nextgeneration/index.html. Accessed 10-01-2014

  28. Genome 10K Project (2009) Genome 10K Project Home Page. https://genome10k.soe.ucsc.edu/. Accessed 10-01-2014

  29. Genome 10K Scientists (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100 (6):659-674. doi:10.1093/jhered/esp086

    Article  CAS  Google Scholar 

  30. Wagman B (2010) Genome 10K project announces first 101 species for genome sequencing. http://cbse.soe.ucsc.edu/news/article/1820?ID=1820. Accessed 10-01-2014

  31. Bernardi G, Wiley EO, Mansour H, Miller MR, Orti G et al. (2012) The fishes of Genome 10K. Mar Genomics 7:3-6. doi:10.1016/j.margen.2012.02.002

    Article  PubMed  Google Scholar 

  32. Li Q, Li N, Hu X, Li J, Du Z et al. (2011) Genome-wide mapping of DNA methylation in chicken. PLoS One 6 (5):e19428. doi:10.1371/journal.pone.0019428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10 (9):631-640. doi:10.1038/nrmicro2857

    Article  PubMed  CAS  Google Scholar 

  34. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99 (8):5261-5266. doi:10.1073/pnas.082089499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A et al. (2010) One bacterial cell, one complete genome. PLoS One 5 (4):e10314. doi:10.1371/journal.pone.0010314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR et al. (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 4 (9):e6864. doi:10.1371/journal.pone.0006864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39 (Database issue):D945-950. doi:10.1093/nar/gkq929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Oakman C, Santarpia L, Di Leo A (2010) Breast cancer assessment tools and optimizing adjuvant therapy. Nat Rev Clin Oncol 7 (12):725-732. doi:10.1038/nrclinonc.2010.170

    Article  PubMed  CAS  Google Scholar 

  39. Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3 (5):31. doi:10.1186/gm247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Spaethling JM, Eberwine JH (2013) Single-cell transcriptomics for drug target discovery. Curr Opin Pharmacol 13 (5):786-790. doi:10.1016/j.coph.2013.04.011

    Article  PubMed  CAS  Google Scholar 

  41. Campbell NA (ed) (2003) Biology: Exploring Life. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  42. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37 (3):222-232. doi:R53R2R64844U5876

    Article  PubMed  CAS  Google Scholar 

  43. Lyons EA, Scheible MK, Sturk-Andreaggi K, Irwin JA, Just RS (2013) A high-throughput Sanger strategy for human mitochondrial genome sequencing. BMC Genomics 14:881. doi:10.1186/1471-2164-14-881

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51 (5):440-450. doi:10.1002/em.20586

    PubMed  CAS  Google Scholar 

  45. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25 (34):4647-4662. doi:1209607

    Article  PubMed  CAS  Google Scholar 

  46. Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM et al. (2013) Reprint of: Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7 (6):632-639. doi:10.1016/j.fsigen.2013.09.007

    Article  PubMed  CAS  Google Scholar 

  47. Fajardo D, Schlautman B, Steffan S, Polashock J, Vorsa N et al. (2013) The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants. Gene. doi:S0378-1119(13)01648-X

    Google Scholar 

  48. Hester J, Atwater K, Bernard A, Francis M, Shivji MS (2013) The complete mitochondrial genome of the basking shark Cetorhinus maximus (Chondrichthyes, Cetorhinidae). Mitochondrial DNA. doi:10.3109/19401736.2013.845762

    PubMed  Google Scholar 

  49. Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14 (4):295-300. doi:10.1038/nrg3463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Davies H, Bignell GR, Cox C, Stephens P, Edkins S et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417 (6892):949-954. doi:10.1038/nature00766

    Article  PubMed  CAS  Google Scholar 

  51. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. (2013) Signatures of mutational processes in human cancer. Nature 500 (7463):415-421. doi:10.1038/nature12477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Futreal PA, Coin L, Marshall M, Down T, Hubbard T et al. (2004) A census of human cancer genes. Nat Rev Cancer 4 (3):177-183. doi:10.1038/nrc1299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C et al. (2010) International network of cancer genome projects. Nature 464 (7291):993-998. doi:10.1038/nature08987

    Article  PubMed  CAS  Google Scholar 

  54. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A et al. (2013) Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24 (6):710-724. doi:10.1016/j.ccr.2013.11.002

    Article  PubMed  CAS  Google Scholar 

  55. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD et al. (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45 (6):602-612. doi:10.1038/ng.2611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Liu Y, Gao M, Lv YM, Yang X, Ren YQ et al. (2011) Confirmation by exome sequencing of the pathogenic role of NCSTN mutations in acne inversa (hidradenitis suppurativa). J Invest Dermatol 131 (7):1570-1572. doi:10.1038/jid.2011.62

    Article  PubMed  CAS  Google Scholar 

  57. Kuhlenbaumer G, Hullmann J, Appenzeller S (2011) Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum Mutat 32 (2):144-151. doi:10.1002/humu.21400

    Article  PubMed  Google Scholar 

  58. Day-Williams AG, Zeggini E (2011) The effect of next-generation sequencing technology on complex trait research. Eur J Clin Invest 41 (5):561-567. doi:10.1111/j.1365-2362.2010.02437.x

    Article  PubMed Central  PubMed  Google Scholar 

  59. Voelkerding KV, Dames S, Durtschi JD (2010) Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 12 (5):539-551. doi:10.2353/jmoldx.2010.100043

    Article  PubMed Central  PubMed  Google Scholar 

  60. Zoghbi HY, Warren ST (2010) Neurogenetics: advancing the “next-generation” of brain research. Neuron 68 (2):165-173. doi:10.1016/j.neuron.2010.10.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324 (5925):387-389. doi:10.1126/science.1167728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Bashamboo A, Ledig S, Wieacker P, Achermann JC, McElreavey K (2010) New technologies for the identification of novel genetic markers of disorders of sex development (DSD). Sex Dev 4 (4-5):213-224. doi:10.1159/000314917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Authors

About this chapter

Cite this chapter

El-Metwally, S., Ouda, O.M., Helmy, M. (2014). Novel Next-Generation Sequencing Applications. In: Next Generation Sequencing Technologies and Challenges in Sequence Assembly. SpringerBriefs in Systems Biology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0715-1_7

Download citation

Publish with us

Policies and ethics