Skip to main content

The Effect of Nutrition and Exercise on Epigenetics and the Development of Cardiovascular Disease

  • Chapter
  • First Online:
Molecular mechanisms and physiology of disease

Abstract

Epigenetics is defined as the study of heritable alterations in gene expression or cellular phenotype. The term defines the difference from just a genetic approach. A more precise definition is that epigenetics is all the meiotically and mitotically inherited changes in gene expression that are not encoded in the deoxyribonucleic acid (DNA) sequence itself. Major epigenetic mechanisms are modifications of histone proteins in chromatin and DNA methylation (which does not alter the DNA sequence). There is increasing evidence for the involvement of epigenetics in human disease such as inflammatory disease and cancer. Other chronic diseases are also susceptible to epigenetic modification such as metabolic diseases including obesity, metabolic syndrome, and diabetes mellitus. There is much evidence for the modification of epigenetics by nutrition and exercise. Through these modifications, there is infinite potential for benefit for the fetus, the newborn, and the individual as well as population effects. Association with cardiovascular (CV) disease including coronary heart disease (CHD) and peripheral arterial disease is evident through epigenetic relationships and modification by major CV risk factors such as tobacco abuse. Aging itself may be altered by epigenetic modification. Knowledge of the subject and its relevance is in a very preliminary stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing a CARD

CARD:

Caspase recruitment domain

CV:

Cardiovascular

DM:

Diabetes mellitus

DNA:

Deoxyribonucleic acid

HDAC:

Histone deacetylase

PAR:

Poly(ADP-ribosylation)

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SAM:

S-adenosylmethionine

References

  • Ahmad S, Heraclides A, Sun Q, Elgzyri T, Ronn T, Ling C, Isomaa B, Eriksson KF, Groop L, Franks PW, Hansson O (2012) Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia. Diabet Med 29:e377–e381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alegria-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3:267–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baccarelli A, Ghosh S (2012) Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 15:323–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bloch W, Suhr F, Zimmer P (2012) Molecular mechanisms of exercise-induced cardiovascular adaptations. Influence of epigenetics, mechanotransduction and free radicals. Herz 37:508–515

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (2010) Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories. Exp Gerontol 45:173–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burdge GC, Hoile SP, Lillycrop KA (2012) Epigenetics: are there implications for personalised nutrition? Curr Opin Clin Nutr Metab Care 15:442–447

    Article  CAS  PubMed  Google Scholar 

  • Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  CAS  PubMed  Google Scholar 

  • Capozzi F, Bordoni A (2013) Foodomics: a new comprehensive approach to food and nutrition. Genes Nutr 8(1):1–4

    Google Scholar 

  • Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19:563–573

    Article  CAS  PubMed  Google Scholar 

  • Dario LS, Rosa MA, Mariela E, Roberto G, Caterina C (2008) Chromatin remodeling agents for cancer therapy. Rev Recent Clin Trials 3:192–203

    Article  CAS  PubMed  Google Scholar 

  • De Rycke M, Liebaers I, Van Steirteghem A (2002) Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod 17:2487–2494

    Article  PubMed  Google Scholar 

  • Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 70:47–56

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  CAS  PubMed  Google Scholar 

  • Franklin TB, Mansuy IM (2010) Epigenetic inheritance in mammals: evidence for the impact of adverse environmental effects. Neurobiol Dis 39:61–65

    Article  CAS  PubMed  Google Scholar 

  • Ghatak A, Faheem O, Thompson PD (2010) The genetics of statin-induced myopathy. Atherosclerosis 210:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure—function relationships and the therapeutic potential for cancer. Curr Med Chem 17:1756–1768

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Liu D (2012) Epigenetics: the missing link to understanding beta-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics 7:841–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godfrey KM, Inskip HM, Hanson MA (2011) The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med 29:257–265

    Article  PubMed Central  PubMed  Google Scholar 

  • Goh KP, Sum CF (2010) Connecting the dots: molecular and epigenetic mechanisms in type 2 diabetes. Curr Diabetes Rev 6:255–265

    Article  CAS  PubMed  Google Scholar 

  • Gordian E, Ramachandran K, Singal R (2009) Methylation mediated silencing of TMS1 in breast cancer and its potential contribution to docetaxel cytotoxicity. Anticancer Res 29:3207–3210

    CAS  PubMed  Google Scholar 

  • Greaves I, Groszmann M, Dennis ES, Peacock WJ (2012) Trans-chromosomal methylation. Epigenetics 7:800–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grun F (2010) Obesogens. Curr Opin Endocrinol Diabetes Obes 17:453–459

    Article  PubMed  Google Scholar 

  • Grun F, Blumberg B (2009) Minireview: the case for obesogens. Mol Endocrinol 23:1127–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haggarty P (2012) Nutrition and the epigenome. Prog Mol Biol Transl Sci 108:427–446

    Article  CAS  PubMed  Google Scholar 

  • Handel AE, Ramagopalan SV (2010) Is Lamarckian evolution relevant to medicine? BMC Med Genet 11:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasegawa M, Imamura R, Motani K, Nishiuchi T, Matsumoto N, Kinoshita T, Suda T (2009) Mechanism and repertoire of ASC-mediated gene expression. J Immunol 182:7655–7662

    Article  CAS  PubMed  Google Scholar 

  • Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P (2012) Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A 109:1743–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong X, Wang X (2012) Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol 34:655–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hossein-Nezhad A, Holick MF (2012) Optimize dietary intake of vitamin D: an epigenetic perspective. Curr Opin Clin Nutr Metab Care 15:567–579

    Article  CAS  PubMed  Google Scholar 

  • Houmard JA, Pories WJ, Dohm GL (2011) Is there a metabolic program in the skeletal muscle of obese individuals? J Obes 2011:250496

    Article  PubMed Central  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  • Janesick A, Blumberg B (2011) Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today 93:34–50

    Article  CAS  PubMed  Google Scholar 

  • Janesick A, Blumberg B (2012) Obesogens, stem cells and the developmental programming of obesity. Int J Androl 35:437–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez-Chillaron JC, Diaz R, Martinez D, Pentinat T, Ramon-Krauel M, Ribo S, Plosch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    Article  CAS  PubMed  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  PubMed  Google Scholar 

  • Kalebic T (2003) Epigenetic transitions: towards therapeutic targets. Expert Opin Ther Targets 7:693–699

    Article  CAS  PubMed  Google Scholar 

  • Kaliman P, Parrizas M, Lalanza JF, Camins A, Escorihuela RM, Pallas M (2011) Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 10:475–486

    Article  PubMed  Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin BE (2008) Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity (Silver Spring) 16(Suppl 3):S51–S54

    Article  Google Scholar 

  • Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41:199–213

    Article  CAS  PubMed  Google Scholar 

  • Manolopoulos VG, Ragia G, Tavridou A (2011) Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 12:1161–1191

    Article  CAS  PubMed  Google Scholar 

  • Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153:2823–2830

    Article  CAS  PubMed  Google Scholar 

  • Mathers JC (2008) Session 2: personalised nutrition. Epigenomics: a basis for understanding individual differences? Proc Nutr Soc 67:390–394

    Article  PubMed  Google Scholar 

  • Mcgee SL, Fairlie E, Garnham AP, Hargreaves M (2009) Exercise-induced histone modifications in human skeletal muscle. J Physiol 587:5951–5958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKay JA, Mathers JC (2011) Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf) 202:103–118

    Article  CAS  Google Scholar 

  • Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 34(4):782–812

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T, Taniguchi S (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31:671–675

    Article  CAS  PubMed  Google Scholar 

  • Nemeth A, Langst G (2004) Chromatin higher order structure: opening up chromatin for transcription. Brief Funct Genomic Proteomic 2:334–343

    Article  CAS  PubMed  Google Scholar 

  • Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4:275–292

    Article  CAS  PubMed  Google Scholar 

  • Oommen AM, Griffin JB, Sarath G, Zempleni J (2005) Roles for nutrients in epigenetic events. J Nutr Biochem 16:74–77

    Article  CAS  PubMed  Google Scholar 

  • Peedicayil J (2006) Epigenetic therapy—a new development in pharmacology. Indian J Med Res 123:17–24

    CAS  PubMed  Google Scholar 

  • Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ribaric S (2012) Diet and aging. Oxid Med Cell Longev 2012:741468

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubio-Aliaga I, Kochhar S, Silva-Zolezzi I (2012) Biomarkers of nutrient bioactivity and efficacy: a route toward personalized nutrition. J Clin Gastroenterol 46:545–554

    Article  CAS  PubMed  Google Scholar 

  • Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C, Gomez-Cabrera MC, Pallardo FV, Lippi G (2012) Physical exercise as an epigenetic modulator. Eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res 26(12):3469–3472

    Article  PubMed  Google Scholar 

  • Scheen AJ, Junien C (2012) Epigenetics, interface between environment and genes: role in complex diseases. Rev Med Liege 67:250–257

    CAS  PubMed  Google Scholar 

  • Stein RA (2012) Epigenetics and environmental exposures. J Epidemiol Community Health 66:8–13

    Article  PubMed  Google Scholar 

  • Suter M, Ma J, Harris A, Patterson L, Brown KA, Shope C, Showalter L, Abramovici A, Aagaard-Tillery KM (2011) Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 6:1284–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Symonds ME (2009) Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Diabetes and health”. Nutrition and its contribution to obesity and diabetes: a life-course approach to disease prevention? Proc Nutr Soc 68:71–77

    Article  PubMed  Google Scholar 

  • Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34(4):753–764

    Article  CAS  PubMed  Google Scholar 

  • Valls J, Millan S, Marti MP, Borras E, Arola L (2009) Advanced separation methods of food anthocyanins, isoflavones and flavanols. J Chromatogr A 1216:7143–7172

    Article  CAS  PubMed  Google Scholar 

  • Whayne TF Jr (2011) Vitamin d: popular cardiovascular supplement but benefit must be evaluated. Int J Angiol 20:63–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Wheatley KE, Nogueira LM, Perkins SN, Hursting SD (2011) Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes 2011:265417

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson AG (2008) Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol 79:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Imhoff-Kunsch B, Girard AW (2012) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 26(Suppl 1):4–26

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Whayne Jr. M.D., Ph.D., F.A.C.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whayne, T.F. (2014). The Effect of Nutrition and Exercise on Epigenetics and the Development of Cardiovascular Disease. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_7

Download citation

Publish with us

Policies and ethics