Skip to main content

Epigenetics in Childhood Health and Disease

  • Chapter
  • First Online:
Molecular mechanisms and physiology of disease

Abstract

The part that epigenetic modifications play in the development of childhood health and disease is being established by ongoing research and discoveries in this field. Right after the establishment of the genetic blueprint at the time of fertilization and zygote formation, the human organism is subject to complex and necessary series of epigenetic modifications of this genetic code to bring about differentiation and development. There are well-recognized stages during this process where the epigenetic changes have the most lasting and profound effects and these are considered critical periods of vulnerability. Depending on the timing of insult within the critical time periods in the human life cycle where epigenetic modifications occur, the effect on health and disease could be transient or may persist across many generations. In this chapter classification of human conditions based on the timing and etiology of epigenetic change has been attempted. Beginning with the time of fertilization of the egg with the sperm and subsequent fetal development and continuing from birth to the attainment of puberty, adulthood, and the generation of gametes for the next generation, the list of conditions where epigenetics has been found to play a key role have been listed and described. The role of epigenetics in certain special circumstances such as assisted reproductive technologies, developmental origins of adult disease, and in the brain and behavioral disorders are also discussed. Understanding the critical period of causation of epigenetic effects may yield important clues in prognostication and in designing therapeutic approaches for these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abidi F, Miano M, Murray J, Schwartz C (2007) A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet 72:19–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE (2008) The genetic aetiology of Silver-Russell syndrome. J Med Genet 45:193–199

    CAS  PubMed  Google Scholar 

  • Albright F, Forbes AP, Henneman PH (1952) Pseudo-pseudohypoparathyroidism. Trans Assoc Am Physicians 65:337–350

    CAS  PubMed  Google Scholar 

  • Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. Elegans. Cell 57:49–57

    CAS  PubMed  Google Scholar 

  • Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MeCP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    CAS  PubMed  Google Scholar 

  • Andreoli F, Barbosa AJ, Parenti MD, Del Rio A (2013) Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des 19:578–613

    CAS  PubMed  Google Scholar 

  • Angelman H (1965) ‘Puppet Children’: a report of three cases. Dev Med Child Neurol 7:681–688

    Google Scholar 

  • Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27:868–879

    CAS  PubMed  Google Scholar 

  • Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N (2005) ZAC, LIT1 (KCNQ1OT1) and P57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 33:2650–2660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, Marsit CJ (2010) Bisphenol A exposure leads to specific microrna alterations in placental cells. Reprod Toxicol 29:401–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baple EL, Poole RL, Mansour S, Willoughby C, Temple IK, Docherty LE, Taylor R, Mackay DJ (2011) An atypical case of hypomethylation at multiple imprinted loci. Eur J Hum Genet 19:360–362

    PubMed Central  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    CAS  PubMed  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker DJ, Osmond C (1987) Death rates from stroke in England and Wales predicted from past maternal mortality. Br Med J (Clin Res Ed) 295:83–86

    CAS  Google Scholar 

  • Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) Micrornas: target recognition and regulatory functions. Cell 136:215–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    CAS  PubMed  Google Scholar 

  • Bartsch O, Labonte J, Albrecht B, Wieczorek D, Lechno S, Zechner U, Haaf T (2010) Two patients with Ep300 mutations and facial dysmorphism different from the classic Rubinstein-Taybi syndrome. Am J Med Genet A 152a:181–184

    PubMed  Google Scholar 

  • Bastepe M, Juppner H (2005) Gnas locus and pseudohypoparathyroidism. Horm Res 63:65–74

    CAS  PubMed  Google Scholar 

  • Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, Kruse K, Rosenbloom AL, Koshiyama H, Juppner H (2001) Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet 10:1231–1241

    CAS  PubMed  Google Scholar 

  • Baysal BE (2004) Genomic imprinting and environment in hereditary paraganglioma. Am J Med Genet C Semin Med Genet 129c:85–90

    PubMed  Google Scholar 

  • Baysal BE (2013) Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim Biophys Acta 1827:573–577

    CAS  PubMed  Google Scholar 

  • Bennett SN, Caporaso N, Fitzpatrick AL, Agrawal A, Barnes K, Boyd HA, Cornelis MC, Hansel NN, Heiss G, Heit JA, Kang JH, Kittner SJ, Kraft P, Lowe W, Marazita ML, Monroe KR, Pasquale LR, Ramos EM, Van Dam RM, Udren J, Williams K (2011) Phenotype harmonization and cross-study collaboration in GWAS consortia: the Geneva experience. Genet Epidemiol 35:159–173

    PubMed Central  PubMed  Google Scholar 

  • Berdasco M, Esteller M (2013) Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 132:359–383

    CAS  PubMed  Google Scholar 

  • Beristain E, Vicente MA, Guerra I, Gutierrez-Corres FB, Garin I, Perez De Nanclares G (2013) Disomy as the genetic underlying mechanisms of loss of heterozigosity in SDHD-paragangliomas. J Clin Endocrinol Metab 98:E1012–E1016

    PubMed  Google Scholar 

  • Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    PubMed  Google Scholar 

  • Bestor TH (2003) Imprinting errors and developmental asymmetry. Philos Trans R Soc Lond B Biol Sci 358:1411–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird A (1992) The essentials of DNA methylation. Cell 70:5–8

    CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  • Blanco-Lago R, Malaga I, Garcia-Penas JJ, Garcia-Ron A (2013) Wolf-Hirschhorn syndrome. A series of 27 patients: their epidemiological and clinical characteristics. The current situation of the patients and the opinions of their caregivers regarding the diagnostic process. Rev Neurol 57:49–56

    PubMed  Google Scholar 

  • Bliek J, Alders M, Maas SM, Oostra RJ, Mackay DM, Van Der Lip K, Callaway JL, Brooks A, Van ‘t Padje S, Westerveld A, Leschot NJ, Mannens MM (2009a) Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet 17:1625–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, Cerrato F, Russo S, Ferraiuolo S, Rinaldi MM, Fischetto R, Lalatta F, Giordano L, Ferrari P, Cubellis MV, Larizza L, Temple IK, Mannens MM, Mackay DJ, Riccio A (2009b) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 17:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bokinni Y (2012) Kabuki syndrome revisited. J Hum Genet 57:223–227

    CAS  PubMed  Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151:417–425

    CAS  PubMed  Google Scholar 

  • Buiting K (2010) Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 154c:365–376

    CAS  PubMed  Google Scholar 

  • Buiting K, Dittrich B, Gross S, Lich C, Farber C, Buchholz T, Smith E, Reis A, Burger J, Nothen MM, Barth-Witte U, Janssen B, Abeliovich D, Lerer I, Van Den Ouweland AM, Halley DJ, Schrander-Stumpel C, Smeets H, Meinecke P, Malcolm S, Gardner A, Lalande M, Nicholls RD, Friend K, Schulze A, Matthijs G, Kokkonen H, Hilbert P, Van Maldergem L, Glover G, Carbonell P, Willems P, Gillessen-Kaesbach G, Horsthemke B (1998) Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint-switch models, genetic counseling, and prenatal diagnosis. Am J Hum Genet 63:170–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, El-Maarri O, Horsthemke B (2003) Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 72:571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bullman H, Lever M, Robinson DO, Mackay DJ, Holder SE, Wakeling EL (2008) Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet 45:396–399

    CAS  PubMed  Google Scholar 

  • Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 178:13–21

    PubMed  Google Scholar 

  • Butler MG (2009) Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 26:477–486

    PubMed Central  PubMed  Google Scholar 

  • Caldji C, Hellstrom IC, Zhang TY, Diorio J, Meaney MJ (2011) Environmental regulation of the neural epigenome. FEBS Lett 585:2049–2058

    CAS  PubMed  Google Scholar 

  • Campeau PM, Lee BH (1993–2014) KAT6B-related disorders. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle

    Google Scholar 

  • Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S, Murdock DM, Jiang MM, Lammer EJ, Enns GM, Rhead WJ, Rowland J, Robertson SP, Cormier-Daire V, Bainbridge MN, Yang XJ, Gingras MC, Gibbs RA, Rosenblatt DS, Majewski J, Lee BH (2012) Mutations in KAT6B, encoding a histone acetyltransferase, cause genitopatellar syndrome. Am J Hum Genet 90:282–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castermans D, Vermeesch JR, Fryns JP, Steyaert JG, Van De Ven WJ, Creemers JW, Devriendt K (2007) Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism. Eur J Hum Genet 15:422–431

    CAS  PubMed  Google Scholar 

  • Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498

    CAS  PubMed  Google Scholar 

  • Chen PY, Meister G (2005) Microrna-guided posttranscriptional gene regulation. Biol Chem 386:1205–1218

    CAS  PubMed  Google Scholar 

  • Claes S, Devriendt K, Van Goethem G, Roelen L, Meireleire J, Raeymaekers P, Cassiman JJ, Fryns JP (2000) Novel syndromic form of X-linked complicated spastic paraplegia. Am J Med Genet 94:1–4

    CAS  PubMed  Google Scholar 

  • Crepin M, Dieu MC, Lejeune S, Escande F, Boidin D, Porchet N, Morin G, Manouvrier S, Mathieu M, Buisine MP (2012) Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility. Hum Mutat 33:180–188

    CAS  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microrna dysregulation in cancer. Nat Rev Genet 10:704–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis TL, Yang GJ, Mccarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9:2885–2894

    CAS  PubMed  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13:1319–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Filippis B, Ricceri L, Fuso A, Laviola G (2013) Neonatal exposure to low dose corticosterone persistently modulates hippocampal mineralocorticoid receptor expression and improves locomotor/exploratory behaviour in a mouse model of Rett syndrome. Neuropharmacology 68:174–183

    PubMed  Google Scholar 

  • De Rycke M, Liebaers I, Van Steirteghem A (2002) Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod 17:2487–2494

    PubMed  Google Scholar 

  • Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, Reik W, Feil R (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282

    CAS  PubMed  Google Scholar 

  • Dechiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    CAS  PubMed  Google Scholar 

  • Demars J, Gicquel C (2012) Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet 81:350–361

    CAS  PubMed  Google Scholar 

  • Demars J, Le Bouc Y, El-Osta A, Gicquel C (2011) Epigenetic and genetic mechanisms of abnormal 11p15 genomic imprinting in Silver-Russell and Beckwith-Wiedemann syndromes. Curr Med Chem 18:1740–1750

    CAS  PubMed  Google Scholar 

  • Dietel M, Johrens K, Laffert M, Hummel M, Blaker H, Muller BM, Lehmann A, Denkert C, Heppner FL, Koch A, Sers C, Anagnostopoulos I (2013) Predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther 20:211–221

    CAS  PubMed  Google Scholar 

  • Dietz DM, Laplant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V, Nestler EJ (2011) Paternal transmission of stress-induced pathologies. Biol Psychiatry 70:408–414

    PubMed Central  PubMed  Google Scholar 

  • Dong R, Zhao R, Zheng S, Zheng Y, Xiong S, Chu Y (2012) Abnormal DNA methylation of ITGAL (CD11a) in Cd4+ T cells from infants with biliary atresia. Biochem Biophys Res Commun 417:986–990

    CAS  PubMed  Google Scholar 

  • Dulac C (2010) Brain function and chromatin plasticity. Nature 465:728–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J, Furey TS, Gerstein M, Giardine B, Greven M, Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S, Kelllis M, Kheradpour P, Lassmann T, Li Q, Lin X, Marinov GK, Merkel A, Mortazavi A, Parker SC, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE, Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J, Bernstein BE, Green ED, Gunter C, Snyder M, Pazin MJ, Lowdon RF, Dillon LA, Adams LB, Kelly CJ, Zhang J, Wexler JR, Good PJ, Feingold EA, Crawford GE, Dekker J, Elinitski L, Farnham PJ, Giddings MC, Gingeras TR, Guigo R, Hubbard TJ, Kellis M, Kent WJ, Lieb JD, Margulies EH, Myers RM, Starnatoyannopoulos JA, Tennebaum SA, Weng Z, White KP, Wold B, Yu Y, Wrobel J, Risk BA, Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X, Mikkelsen TS et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    CAS  PubMed  Google Scholar 

  • Eggermann T (2011) Imprinting disorders in humans. In: Tollefsbol TO (ed) Handbook of epigenetics: the new molecular and medical genetics, 1st edn. Academic, San Diego, CA

    Google Scholar 

  • Eggermann T, Curtis M, Zerres K, Hughes HE (2004) Maternal uniparental disomy 16 and genetic counseling: new case and survey of published cases. Genet Couns 15:183–190

    CAS  PubMed  Google Scholar 

  • Eggermann T, Elbracht M, Schroder C, Reutter H, Soellner L, Spengler S, Begemann M (2013) Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders. J Pediatr 163(4):1202–1207

    PubMed  Google Scholar 

  • El-Maarri O, Seoud M, Coullin P, Herbiniaux U, Oldenburg J, Rouleau G, Slim R (2003) Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet 12:1405–1413

    CAS  PubMed  Google Scholar 

  • Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, Schofield PN, Maher ER (2000) Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. J Med Genet 37:921–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engreitz JM, Pandya-Jones A, Mcdonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973

    PubMed Central  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    CAS  PubMed  Google Scholar 

  • Fallon SC, Chang S, Finegold MJ, Karpen SJ, Brandt ML (2013) Discordant presentation of biliary atresia in premature monozygotic twins. J Pediatr Gastroenterol Nutr 57(4):e22–e23

    PubMed  Google Scholar 

  • Farwell DG, Shera KA, Koop JI, Bonnet GA, Matthews CP, Reuther GW, Coltrera MD, Mcdougall JK, Klingelhutz AJ (2000) Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. Am J Pathol 156:1537–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    CAS  PubMed  Google Scholar 

  • Fiorentino FP, Marchesi I, Giordano A (2013) On the role of retinoblastoma family proteins in the establishment and maintenance of the epigenetic landscape. J Cell Physiol 228:276–284

    CAS  PubMed  Google Scholar 

  • Fraga MF, Esteller M (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4:1377–1381

    CAS  PubMed  Google Scholar 

  • Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, Jones PA (2009) The putative tumor suppressor microrna-101 modulates the cancer epigenome by repressing the polycomb group protein Ezh2. Cancer Res 69:2623–2629

    CAS  PubMed  Google Scholar 

  • Fuso A, Cavallaro RA, Nicolia V, Scarpa S (2012) PSEN1 Promoter demethylation in hyperhomocysteinemic TgCRND8 mice is the culprit, not the consequence. Curr Alzheimer Res 9:527–535

    CAS  PubMed  Google Scholar 

  • Gallagher A, Hallahan B (2012) Fragile X-associated disorders: a clinical overview. J Neurol 259:401–413

    CAS  PubMed  Google Scholar 

  • Gibbons R (2006) Alpha thalassaemia-mental retardation, X linked. Orphanet J Rare Dis 1:15

    PubMed Central  PubMed  Google Scholar 

  • Girardot M, Cavaille J, Feil R (2012) Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics 7:1341–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2007) Developmental plasticity and human disease: research directions. J Intern Med 261:461–471

    CAS  PubMed  Google Scholar 

  • Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA (2007) Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A 104:12796–12800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA, Bateson P, Beedle AS, Law CM, Bhutta ZA, Anokhin KV, Bougneres P, Chandak GR, Dasgupta P, Smith GD, Ellison PT, Forrester TE, Gilbert SF, Jablonka E, Kaplan H, Prentice AM, Simpson SJ, Uauy R, West-Eberhard MJ (2009) Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373:1654–1657

    PubMed  Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, Mclean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goel A, Nguyen TP, Leung HC, Nagasaka T, Rhees J, Hotchkiss E, Arnold M, Banerji P, Koi M, Kwok CT, Packham D, Lipton L, Boland CR, Ward RL, Hitchins MP (2011) De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128:869–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R (2012) Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 22:1395–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosden RG, Feinberg AP (2007) Genetics and epigenetics—nature’s pen-and-pencil set. N Engl J Med 356:731–733

    CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    CAS  PubMed  Google Scholar 

  • Grun F, Blumberg B (2009) Endocrine disrupters as obesogens. Mol Cell Endocrinol 304:19–29

    PubMed Central  PubMed  Google Scholar 

  • Hacihamdioglu B, Arslan M, Sari E, Kurtcu K, Yesilkaya E (2013) Brachydactyly mental retardation syndrome in differential diagnosis of pseudopseudohypoparathyroidism. J Pediatr Endocrinol Metab 26:793–795

    CAS  PubMed  Google Scholar 

  • Hackett JA, Surani MA (2013) DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci 368:20110328

    PubMed Central  PubMed  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045–1046

    CAS  PubMed  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46:857–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallam TM, Bourtchouladze R (2006) Rubinstein-Taybi syndrome: molecular findings and therapeutic approaches to improve cognitive dysfunction. Cell Mol Life Sci 63:1725–1735

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    CAS  PubMed  Google Scholar 

  • Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE, Mcmillin MJ, Gildersleeve HI, Bigham AW, Tabor HK, Mefford HC, Cook J, Yoshiura K, Matsumoto T, Matsumoto N, Miyake N, Tonoki H, Naritomi K, Kaname T, Nagai T, Ohashi H, Kurosawa K, Hou JW, Ohta T, Liang D, Sudo A, Morris CA, Banka S, Black GC, Clayton-Smith J, Nickerson DA, Zackai EH, Shaikh TH, Donnai D, Niikawa N, Shendure J, Bamshad MJ (2011) Spectrum of Mll2 (Alr) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A 155a:1511–1516

    PubMed  Google Scholar 

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96:14412–14417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haruta M, Arai Y, Watanabe N, Fujiwara Y, Honda S, Ohshima J, Kasai F, Nakadate H, Horie H, Okita H, Hata J, Fukuzawa M, Kaneko Y (2012) Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci 103:1129–1135

    CAS  PubMed  Google Scholar 

  • Harwell (2013) Mousebook [Online]. Medical Research Council Harwell. http://Www.Mousebook.Org/Catalog.Php?Catalog=Imprinting. Accessed 10 July 2013

  • Hata K, Okano M, Lei H, Li E (2002) DnmT3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  • He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16:547–554

    CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Lumey LH, Slagboom PE (2009) The epigenome: archive of the prenatal environment. Epigenetics 4:526–531

    CAS  PubMed  Google Scholar 

  • Herman JG (1999) Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 9:359–367

    CAS  PubMed  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587

    CAS  PubMed  Google Scholar 

  • Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012a) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109:10522–10527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heyn H, Vidal E, Sayols S, Sanchez-Mut JV, Moran S, Medina I, Sandoval J, Simo-Riudalbas L, Szczesna K, Huertas D, Gatto S, Matarazzo MR, Dopazo J, Esteller M (2012b) Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics 7:542–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705

    CAS  PubMed  Google Scholar 

  • Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′utr. Cancer Cell 20:200–213

    CAS  PubMed  Google Scholar 

  • Hogg K, Price EM, Hanna CW, Robinson WP (2012) Prenatal and perinatal environmental influences on the human fetal and placental epigenome. Clin Pharmacol Ther 92:716–726

    CAS  PubMed  Google Scholar 

  • Horsthemke B (2006) Epimutations in human disease. Curr Top Microbiol Immunol 310:45–59

    CAS  PubMed  Google Scholar 

  • Horsthemke B (2010) Mechanisms of imprint dysregulation. Am J Med Genet C Semin Med Genet 154c:321–328

    CAS  PubMed  Google Scholar 

  • Horsthemke B, Buiting K (2008) Genomic imprinting and imprinting defects in humans. Adv Genet 61:225–246

    CAS  PubMed  Google Scholar 

  • Huidobro C, Fernandez AF, Fraga MF (2013) The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 70:1543–1573

    CAS  PubMed  Google Scholar 

  • Hutchings JA (2011) Old wine in new bottles: reaction norms in salmonid fishes. Heredity (Edinb) 106:421–437

    CAS  Google Scholar 

  • Huxley AF (1956) Epigenetics. Nature 177:807–809

    Google Scholar 

  • Ishikawa H, Banzai M, Yamauchi T (1999) Developmental retardation of XO mouse embryos at mid-gestation. J Reprod Fertil 115:263–267

    CAS  PubMed  Google Scholar 

  • Iwase S, Shi Y (2011) Histone and DNA modifications in mental retardation. Prog Drug Res 67:147–173

    CAS  PubMed  Google Scholar 

  • Jacquot S, Merienne K, De Cesare D, Pannetier S, Mandel JL, Sassone-Corsi P, Hanauer A (1998a) Mutation analysis of the RSK2 gene in Coffin-Lowry patients: extensive allelic heterogeneity and a high rate of de novo mutations. Am J Hum Genet 63:1631–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquot S, Merienne K, Pannetier S, Blumenfeld S, Schinzel A, Hanauer A (1998b) Germline mosaicism in Coffin-Lowry syndrome. Eur J Hum Genet 6:578–582

    CAS  PubMed  Google Scholar 

  • Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP, Van Esch H, Kleefstra T, Hamel B, Moraine C, Gecz J, Turner G, Reinhardt R, Kalscheuer VM, Ropers HH, Lenzner S (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 76:227–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    CAS  PubMed  Google Scholar 

  • Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y, Matsuoka K, Takahashi T, Noguchi M, Masumoto K, Utsunomiya T, Kouzan H, Komatsu Y, Ohashi H, Kurosawa K, Kosaki K, Ferguson-Smith AC, Ishino F, Ogata T (2008) Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal Upd(14)-like phenotypes. Nat Genet 40:237–242

    CAS  PubMed  Google Scholar 

  • Kagami M, Matsuoka K, Nagai T, Yamanaka M, Kurosawa K, Suzumori N, Sekita Y, Miyado M, Matsubara K, Fuke T, Kato F, Fukami M, Ogata T (2012) Paternal uniparental disomy 14 and related disorders: placental gene expression analyses and histological examinations. Epigenetics 7:1142–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang D, Cho HS, Toyokawa G, Kogure M, Yamane Y, Iwai Y, Hayami S, Tsunoda T, Field HI, Matsuda K, Neal DE, Ponder BA, Maehara Y, Nakamura Y, Hamamoto R (2013) The histone methyltransferase Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) is involved in human carcinogenesis. Genes Chromosomes Cancer 52:126–139

    CAS  PubMed  Google Scholar 

  • Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, Gaughan JP, Coutifaris C, Sapienza C (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 18:3769–3778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelsey G (2010) Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am J Med Genet C Semin Med Genet 154c:377–386

    CAS  PubMed  Google Scholar 

  • Keverne EB (2012) Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 264:207–217

    Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK, Macdonald RG, Jirtle RL (2000) M6P/IGF2R Imprinting evolution in mammals. Mol Cell 5:707–716

    CAS  PubMed  Google Scholar 

  • Kinnally EL, Feinberg C, Kim D, Ferguson K, Leibel R, Coplan JD, John Mann J (2011) DNA methylation as a risk factor in the effects of early life stress. Brain Behav Immun 25:1548–1553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70–73

    CAS  PubMed  Google Scholar 

  • Kleefstra T, Nillesen WM, Yntema HG (1993–2014) Kleefstra syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle

    Google Scholar 

  • Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, De Brouwer AP, Nillesen W, Sistermans EA, Hamel BC, De Bruijn D, Fryns JP, Yntema HG, Brunner HG, De Vries BB, Van Bokhoven H (2005) Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42:299–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleefstra T, Van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, Van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, Mcgaughran J, Rauch A, Zenker M, Adam MP, Innes M, Davies C, Lopez AG, Casalone R, Weber A, Brueton LA, Navarro AD, Bralo MP, Venselaar H, Stegmann SP, Yntema HG, Van Bokhoven H, Brunner HG (2009) Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 46:598–606

    CAS  PubMed  Google Scholar 

  • Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, Pj BD, Parisi JE, Mer G, Smith DI, Dyck PJ (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43:595–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohda T, Ishino F (2013) Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos Trans R Soc Lond B Biol Sci 368:20120353

    PubMed Central  PubMed  Google Scholar 

  • Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19:675–686

    CAS  PubMed  Google Scholar 

  • Kou YC, Shao L, Peng HH, Rosetta R, Del Gaudio D, Wagner AF, Al-Hussaini TK, Van Den Veyver IB (2008) A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 14:33–40

    CAS  PubMed  Google Scholar 

  • Kurosaki T, Hikida M (2009) Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev 228:132–148

    CAS  PubMed  Google Scholar 

  • Labialle S, Cavaille J (2011) Do repeated arrays of regulatory small-RNA genes elicit genomic imprinting? Concurrent emergence of large clusters of small non-coding RNAs and genomic imprinting at four evolutionarily distinct eutherian chromosomal loci. Bioessays 33:565–573

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  • Lalande M (2001) Imprints of disease at GNAS1. J Clin Invest 107:793–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lan J, Hua S, He X, Zhang Y (2010) DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin (Shanghai) 42:243–252

    CAS  Google Scholar 

  • Lana E, Megarbane A, Tourriere H, Sarda P, Lefranc G, Claustres M, De Sario A (2012) DNA replication is altered in immunodeficiency centromeric instability facial anomalies (ICF) cells carrying DNMT3B mutations. Eur J Hum Genet 20:1044–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    CAS  PubMed  Google Scholar 

  • Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S, Schwartz CE, Lespinasse J, Van Esch H, Lacombe D, Goizet C, Phan-Dinh Tuy F, Van Bokhoven H, Fryns JP, Chelly J, Ropers HH, Moraine C, Hamel BC, Briault S (2005) Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet 42:780–786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD (1981) Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 304:325–329

    CAS  PubMed  Google Scholar 

  • Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, Maystadt I, Dallapiccola B, Verellen-Dumoulin C (2012) Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet 90:119–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    CAS  PubMed  Google Scholar 

  • Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD (2012) DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol 41:188–199

    PubMed Central  PubMed  Google Scholar 

  • Lepage JF, Hong DS, Hallmayer J, Reiss AL (2012) Genomic imprinting effects on cognitive and social abilities in prepubertal girls with Turner syndrome. J Clin Endocrinol Metab 97:E460–E464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewitus E, Kalinka AT (2013) Neocortical development as an evolutionary platform for intragenomic conflict. Front Neuroanat 7:2

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Sasaki H (2011) Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res 21:466–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    CAS  PubMed  Google Scholar 

  • Li S, Hursting SD, Davis BJ, Mclachlan JA, Barrett JC (2003) Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci 983:161–169

    CAS  PubMed  Google Scholar 

  • Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Vogel JL, Arbuckle JH, Rai G, Jadhav A, Simeonov A, Maloney DJ, Kristie TM (2013) Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency. Sci Transl Med 5:167ra5

    PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    CAS  PubMed  Google Scholar 

  • Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, Lam W, Oley C, Cole T, Brueton LA, Reik W, Macdonald F, Maher ER (2009) Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 24:741–747

    PubMed  Google Scholar 

  • Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107:13318–13323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS (2000) A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 106:1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Hoyo C, Murphy S, Huang Z, Overcash F, Thompson J, Brown H, Murtha AP (2013) DNA methylation at imprint regulatory regions in preterm birth and infection. Am J Obstet Gynecol 208(395):E1–E7

    Google Scholar 

  • Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC (2006) Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 5:449–467

    CAS  PubMed  Google Scholar 

  • Lucifero D, Chaillet JR, Trasler JM (2004) Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update 10:3–18

    CAS  PubMed  Google Scholar 

  • Ludbrook LM, Harley VR (2004) Sex determination: a ‘Window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121

    CAS  PubMed  Google Scholar 

  • Ludwig DS, Currie J (2010) The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet 376:984–990

    PubMed Central  PubMed  Google Scholar 

  • Lumey LH, Stein AD (1997) Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol 146:810–819

    CAS  PubMed  Google Scholar 

  • Lumey LH, Stein AD, Kahn HS, Van Der Pal-De Bruin KM, Blauw GJ, Zybert PA, Susser ES (2007) Cohort profile: the Dutch hunger winter families study. Int J Epidemiol 36:1196–1204

    CAS  PubMed  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    CAS  PubMed  Google Scholar 

  • Maccani MA, Avissar-Whiting M, Banister CE, Mcgonnigal B, Padbury JF, Marsit CJ (2010) Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5:583–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maccani MA, Padbury JF, Marsit CJ (2011) miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 6, E21210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maccani MA, Padbury JF, Lester BM, Knopik VS, Marsit CJ (2013) Placental miRNA expression profiles are associated with measures of infant neurobehavioral outcomes. Pediatr Res 74(3):272–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackay DJ, Temple IK (2010) Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet 154c:335–342

    CAS  PubMed  Google Scholar 

  • Mackay DJ, Boonen SE, Clayton-Smith J, Goodship J, Hahnemann JM, Kant SG, Njolstad PR, Robin NH, Robinson DO, Siebert R, Shield JP, White HE, Temple IK (2006) A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 120:262–269

    CAS  PubMed  Google Scholar 

  • Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JM, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951

    CAS  PubMed  Google Scholar 

  • Maher B (2012) Encode: the human encyclopaedia. Nature 489:46–48

    PubMed  Google Scholar 

  • Makishima H, Maciejewski JP (2011) Pathogenesis and consequences of uniparental disomy in cancer. Clin Cancer Res 17:3913–3923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7, E31901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mantovani G, Spada A (2006) Mutations in the Gs alpha gene causing hormone resistance. Best Pract Res Clin Endocrinol Metab 20:501–513

    CAS  PubMed  Google Scholar 

  • Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet 25:173–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maraschio P, Tupler R, Dainotti E, Piantanida M, Cazzola G, Tiepolo L (1989) Differential expression of the ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) mutation in lymphocytes and fibroblasts. J Med Genet 26:452–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mariot V, Maupetit-Mehouas S, Sinding C, Kottler ML, Linglart A (2008) A maternal epimutation of GNAS leads to Albright osteodystrophy and parathyroid hormone resistance. J Clin Endocrinol Metab 93:661–665

    CAS  PubMed  Google Scholar 

  • Martin GM (2012) Stochastic modulations of the pace and patterns of ageing: impacts on quasi-stochastic distributions of multiple geriatric pathologies. Mech Ageing Dev 133:107–111

    PubMed Central  PubMed  Google Scholar 

  • Martin-Gronert MS, Ozanne SE (2012) Mechanisms underlying the developmental origins of disease. Rev Endocr Metab Disord 13:85–92

    PubMed  Google Scholar 

  • Marx V (2012) Epigenetics: reading the second genomic code. Nature 491:143–147

    CAS  PubMed  Google Scholar 

  • Matthews RP, Eauclaire SF, Mugnier M, Lorent K, Cui S, Ross MM, Zhang Z, Russo P, Pack M (2011) DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology 53:905–914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maze I, Covington HE 3rd, Dietz DM, Laplant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327:213–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mcgowan PO, Sasaki A, D'alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mcgrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    CAS  PubMed  Google Scholar 

  • Mcquown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31:764–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13:269–277

    CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendelsohn AR, Larrick JW (2013) Rejuvenation of adult stem cells: is age-associated dysfunction epigenetic? Rejuvenation Res 16:152–157

    CAS  PubMed  Google Scholar 

  • Miyake K, Yang C, Minakuchi Y, Ohori K, Soutome M, Hirasawa T, Kazuki Y, Adachi N, Suzuki S, Itoh M, Goto YI, Andoh T, Kurosawa H, Oshimura M, Sasaki M, Toyoda A, Kubota T (2013) Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS One 8, E66729

    CAS  PubMed  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    CAS  PubMed  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1):R47–R58

    CAS  PubMed  Google Scholar 

  • Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, Mcmorrow L, Loew T et al (1994) Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet 7:440–447

    CAS  PubMed  Google Scholar 

  • Mulligan CJ, D'errico NC, Stees J, Hughes DA (2012) Methylation changes at Nr3c1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7:853–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    CAS  PubMed  Google Scholar 

  • Murphy SK, Huang Z, Hoyo C (2012) Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS One 7, E40924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Na ES, Nelson ED, Kavalali ET, Monteggia LM (2013) The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology 38:212–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nafee TM, Farrell WE, Carroll WD, Fryer AA, Ismail KM (2008) Epigenetic control of fetal gene expression. BJOG 115:158–168

    CAS  PubMed  Google Scholar 

  • Nakamura K, Tanoue A (2013) Etiology of biliary atresia as a developmental anomaly: recent advances. J Hepatobiliary Pancreat Sci 20:459–464

    PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    CAS  PubMed  Google Scholar 

  • Neguembor MV, Gabellini D (2010) In junk we trust: repetitive DNA, epigenetics and facioscapulohumeral muscular dystrophy. Epigenomics 2:271–287

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2012) Epigenetics: stress makes its molecular mark. Nature 490:171–172

    CAS  PubMed  Google Scholar 

  • Newell-Price J, Clark AJ, King P (2000) Dna methylation and silencing of gene expression. Trends Endocrinol Metab 11:142–148

    CAS  PubMed  Google Scholar 

  • Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342:281–285

    CAS  PubMed  Google Scholar 

  • Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T, Sawa A (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339:335–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nugent BM, Mccarthy MM (2011) Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology 93:150–158

    CAS  PubMed  Google Scholar 

  • Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E (2013) Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 26:465–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • O'rahilly R (1979) Early human development and the chief sources of information on staged human embryos. Eur J Obstet Gynecol Reprod Biol 9:273–280

    PubMed  Google Scholar 

  • Paoloni-Giacobino A, Chaillet JR (2004) Genomic imprinting and assisted reproduction. Reprod Health 1:6

    PubMed Central  PubMed  Google Scholar 

  • Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park YJ, Herman H, Gao Y, Lindroth AM, Hu BY, Murphy PJ, Putnam JR, Soloway PD (2012) Sequences sufficient for programming imprinted germline DNA methylation defined. PLoS One 7, E33024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira PM, Schneider A, Pannetier S, Heron D, Hanauer A (2010) Coffin-Lowry syndrome. Eur J Hum Genet 18:627–633

    PubMed  Google Scholar 

  • Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, Hassan SS, Kim CJ (2007) Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 196(261):E1–E6

    PubMed  Google Scholar 

  • Plagemann A, Roepke K, Harder T, Brunn M, Harder A, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW (2010) Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 38:393–400

    CAS  PubMed  Google Scholar 

  • Prader A, Labhart A, Willi H (1956) Ein syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261

    Google Scholar 

  • Qiao Z, Ren S, Li W, Wang X, He M, Guo Y, Sun L, He Y, Ge Y, Yu Q (2013) Chidamide, a novel histone deacetylase inhibitor, synergistically enhances gemcitabine cytotoxicity in pancreatic cancer cells. Biochem Biophys Res Commun 434:95–101

    CAS  PubMed  Google Scholar 

  • Qiu J, Shi G, Jia Y, Li J, Wu M, Dong S, Wong J (2010) The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20:908–918

    CAS  PubMed  Google Scholar 

  • Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL, Richardson BC (1993) Treating activated Cd4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92:38–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raefski AS, O'neill MJ (2005) Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 37:620–624

    CAS  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    CAS  PubMed  Google Scholar 

  • Reis AH, Vargas FR, Lemos B (2012) More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet 3:284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren J, Chu Y, Zhang Y, Li Y, Cai H, Zhang X, Zhao D, Li Z, Ma H, Li W, Wang H, Wang J, Chen Y, Gao YE, Xiao L, Liu R, Qian J, Liu Y, Shi X, Jiang SW (2013a) Epigenetic interventions increase the radiation sensitivity of cancer cells. Curr Pharm Des. http://www.ncbi.nlm.nih.gov/pubmed/23888958

  • Ren J, Zhang J, Cai H, Li Y, Zhang Y, Zhang X, Zhao D, Li Z, Ma H, Li W, Wang J, Gao YE, Chen Y, Xiao L, Liu R, Qian J, Liu Y, Li J (2013b) HDAC as a therapeutic target for treatment of endometrial cancers. Curr Pharm Des. http://www.ncbi.nlm.nih.gov/pubmed/23888962

  • Reul JM, Hesketh SA, Collins A, Mecinas MG (2009) Epigenetic mechanisms in the dentate gyrus act as a molecular switch in hippocampus-associated memory formation. Epigenetics 4:434–439

    CAS  PubMed  Google Scholar 

  • Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, Pouchet C, Gilbert L, O'brien PK, Serfas K, Broderick P, Houlston RS, Lesueur F, Bonora E, Muljo S, Schimke RN, Bouron-Dal Soglio D, Arseneau J, Schultz KA, Priest JR, Nguyen VH, Harach HR, Livingston DM, Foulkes WD, Tischkowitz M (2011) DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305:68–77

    CAS  PubMed  Google Scholar 

  • Rio M, Clech L, Amiel J, Faivre L, Lyonnet S, Le Merrer M, Odent S, Lacombe D, Edery P, Brauner R, Raoul O, Gosset P, Prieur M, Vekemans M, Munnich A, Colleaux L, Cormier-Daire V (2003) Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet 40:436–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 113(3):423–432

    PubMed  Google Scholar 

  • Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C (2006) The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43:902–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinstein JH, Taybi H (1963) Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. Am J Dis Child 105:588–608

    CAS  PubMed  Google Scholar 

  • Russell A (1954) A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med 47:1040–1044

    CAS  PubMed  Google Scholar 

  • Sacconi S, Camano P, De Greef JC, Lemmers RJ, Salviati L, Boileau P, Lopez De Munain Arregui A, Van Der Maarel SM, Desnuelle C (2012) Patients with a phenotype consistent with facioscapulohumeral muscular dystrophy display genetic and epigenetic heterogeneity. J Med Genet 49:41–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagi L, Zuckerman-Levin N, Gawlik A, Ghizzoni L, Buyukgebiz A, Rakover Y, Bistritzer T, Admoni O, Vottero A, Baruch O, Fares F, Malecka-Tendera E, Hochberg Z (2007) Clinical significance of the parental origin of the X chromosome in Turner syndrome. J Clin Endocrinol Metab 92:846–852

    CAS  PubMed  Google Scholar 

  • Sandin S, Hultman CM, Kolevzon A, Gross R, Maccabe JH, Reichenberg A (2012) Advancing maternal age is associated with increasing risk for autism: a review and meta-analysis. J Am Acad Child Adolesc Psychiatr 477–486:e471

    Google Scholar 

  • Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M, O'neill LP, Murrell A, Ling C, Constancia M, Ozanne SE (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108:5449–5454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sapienza C (1991) Genome imprinting and carcinogenesis. Biochim Biophys Acta 1072:51–61

    CAS  PubMed  Google Scholar 

  • Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891

    CAS  PubMed  Google Scholar 

  • Scott RH, Murray A, Baskcomb L, Turnbull C, Loveday C, Al-Saadi R, Williams R, Breatnach F, Gerrard M, Hale J, Kohler J, Lapunzina P, Levitt GA, Picton S, Pizer B, Ronghe MD, Traunecker H, Williams D, Kelsey A, Vujanic GM, Sebire NJ, Grundy P, Stiller CA, Pritchard-Jones K, Douglas J, Rahman N (2012) Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3:327–335

    PubMed Central  PubMed  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368:20110330

    PubMed Central  PubMed  Google Scholar 

  • Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y, Antonarakis SE (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21:1592–1600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheth F, Akinde OR, Datar C, Adeteye OV, Sheth J (2012) Genotype-phenotype characterization of Wolf-Hirschhorn syndrome confirmed by fish: case reports. Case Rep Genet 2012:878796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N (2003) Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 304:184–190

    CAS  PubMed  Google Scholar 

  • Siderius LE, Hamel BC, Van Bokhoven H, De Jager F, Van Den Helm B, Kremer H, Heineman-De Boer JA, Ropers HH, Mariman EC (1999) X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3. Am J Med Genet 85:216–220

    CAS  PubMed  Google Scholar 

  • Silver HK, Kiyasu W, George J, Deamer WC (1953) Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 12:368–376

    CAS  PubMed  Google Scholar 

  • Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE, Gillessen-Kaesbach G, Derks R, White SM, Cohen-Snuijf R, Kant SG, Hoefsloot LH, Reardon W, Brunner HG, Bongers EM, Trembath RC (2012) De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet 90:290–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    CAS  PubMed  Google Scholar 

  • Skinner MK, Haque CG, Nilsson E, Bhandari R, Mccarrey JR (2013) Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One 8, E66318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, Bacarese-Hamilton M, Creswell C, Mcgurk R, Jacobs PA (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708

    CAS  PubMed  Google Scholar 

  • Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S, Lescelleur O, Biertho L, Simard S, Kral JG, Marceau P (2009) Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 94:4275–4283

    CAS  PubMed  Google Scholar 

  • Sohn YB, Lee CG, Ko JM, Yang JA, Yun JN, Jung EJ, Jin HS, Park SJ, Jeong SY (2013) Clinical and genetic spectrum of 18 unrelated Korean patients with Sotos syndrome: frequent 5q35 microdeletion and identification of four novel NSD1 mutations. J Hum Genet 58:73–77

    PubMed  Google Scholar 

  • Sotos JF, Dodge PR, Muirhead D, Crawford JD, Talbot NB (1964) Cerebral gigantism in childhood. A syndrome of excessively rapid growth and acromegalic features and a nonprogressive neurologic disorder. N Engl J Med 271:109–116

    CAS  PubMed  Google Scholar 

  • Spector LG, Birch J (2012) The epidemiology of hepatoblastoma. Pediatr Blood Cancer 59:776–779

    PubMed  Google Scholar 

  • Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet 7:433–439

    CAS  PubMed  Google Scholar 

  • Stunkel W, Pan H, Chew SB, Tng E, Tan JH, Chen L, Joseph R, Cheong CY, Ong ML, Lee YS, Chong YS, Saw SM, Meaney MJ, Kwek K, Sheppard AM, Gluckman PD, Holbrook JD (2012) Transcriptome changes affecting Hedgehog and cytokine signalling in the umbilical cord: implications for disease risk. PLoS One 7, E39744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A (2008) Dna methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    CAS  PubMed  Google Scholar 

  • Symonds ME, Sebert SP, Budge H (2009) The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health. Proc Nutr Soc 68:416–421

    CAS  PubMed  Google Scholar 

  • Szakszon K, Salpietro C, Kakar N, Knegt AC, Olah E, Dallapiccola B, Borck G (2013) De novo mutations of the gene encoding the histone acetyltransferase KAT6B in two patients with Say-Barber/Biesecker/Young-Simpson syndrome. Am J Med Genet A 161:884–888

    CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tammachote R, Kingsuwannapong N, Tongkobpetch S, Srichomthong C, Yeetong P, Kingwatanakul P, Monico CG, Suphapeetiporn K, Shotelersuk V (2012) Primary hyperoxaluria type 1 and brachydactyly mental retardation syndrome caused by a novel mutation in AGXT and a terminal deletion of chromosome 2. Am J Med Genet A 158a:2124–2130

    PubMed  Google Scholar 

  • Tatton-Brown K, Rahman N (1993–2014) EZH2-related overgrowth. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle

    Google Scholar 

  • Tatton-Brown K, Rahman N (2013) The NSD1 and EZH2 overgrowth genes, similarities and differences. Am J Med Genet C Semin Med Genet 163:86–91

    CAS  Google Scholar 

  • Tatton-Brown K, Cole TRP, Rahman N (1993–2014) Sotos syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle

    Google Scholar 

  • Tawil R, Van Der Maarel SM (2006) Facioscapulohumeral muscular dystrophy. Muscle Nerve 34:1–15

    CAS  PubMed  Google Scholar 

  • Tawil R, Figlewicz DA, Griggs RC, Weiffenbach B (1998) Facioscapulohumeral dystrophy: a distinct regional myopathy with a novel molecular pathogenesis. FSH consortium. Ann Neurol 43:279–282

    CAS  PubMed  Google Scholar 

  • Temple IK (2007) Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith-Wiedemann syndrome. Endocr Dev 12:113–123

    CAS  PubMed  Google Scholar 

  • Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P (1991) Maternal uniparental disomy for chromosome 14. J Med Genet 28:511–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22(R1):R7–R15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timmer MR, Beuers U, Fockens P, Ponsioen CY, Rauws EA, Wang KK, Krishnadath KK (2013) Genetic and epigenetic abnormalities in primary sclerosing cholangitis-associated cholangiocarcinoma. Inflamm Bowel Dis 19:1789–1797

    PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) Dna methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomizawa S, Sasaki H (2012) Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 57:84–91

    CAS  PubMed  Google Scholar 

  • Van Belzen M, Bartsch O, Lacombe D, Peters DJ, Hennekam RC (2011) Rubinstein-Taybi syndrome (Crebbp, Ep300). Eur J Hum Genet 19(Preceeding):118–120

    Google Scholar 

  • Van Deutekom JC, Wijmenga C, Van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW, Van Ommen GJ, Hofker MH, Frants RR (1993) Fshd associated DNA rearrangements are due to deletions of integral copies of a 3.2 Kb tandemly repeated unit. Hum Mol Genet 2:2037–2042

    PubMed  Google Scholar 

  • Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, Mcdonough CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, De Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabasi AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verloes A, Bremond-Gignac D, Isidor B, David A, Baumann C, Leroy MA, Stevens R, Gillerot Y, Heron D, Heron B, Benzacken B, Lacombe D, Brunner H, Bitoun P (2006) Blepharophimosis-mental retardation (BMR) syndromes: a proposed clinical classification of the so-called Ohdo syndrome, and delineation of two new BMR syndromes, one X-linked and one autosomal recessive. Am J Med Genet A 140:1285–1296

    PubMed  Google Scholar 

  • Vige A, Gallou-Kabani C, Junien C (2008) Sexual dimorphism in non-mendelian inheritance. Pediatr Res 63:340–347

    PubMed  Google Scholar 

  • Villavicencio-Lorini P, Klopocki E, Trimborn M, Koll R, Mundlos S, Horn D (2013) Phenotypic variant of brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. Eur J Hum Genet 21:743–748

    CAS  PubMed  Google Scholar 

  • Vottero A, Minari R, Viani I, Tassi F, Bonatti F, Neri TM, Bertolini L, Bernasconi S, Ghizzoni L (2011) Evidence for epigenetic abnormalities of the androgen receptor gene in foreskin from children with hypospadias. J Clin Endocrinol Metab 96(12):E1953–E1962

    CAS  PubMed  Google Scholar 

  • Wada T (2009) X-linked alpha-thalassemia/mental retardation syndrome. Rinsho Byori 57:382–390

    CAS  PubMed  Google Scholar 

  • Waddington CH (1952) The epigenetics of birds. University Press, Cambridge

    Google Scholar 

  • Walker DM, Gore AC (2011) Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 7:197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK (1991) Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 robertsonian translocation carrier. Am J Hum Genet 48:1069–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Weaver IC, Gauthier-Fisher A, Wang H, He L, Yeomans J, Wondisford F, Kaplan DR, Miller FD (2010) CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain. Dev Cell 18:114–125

    CAS  PubMed  Google Scholar 

  • Waterland RA, Lin JR, Smith CA, Jirtle RL (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 15:705–716

    CAS  PubMed  Google Scholar 

  • Weichenhan D, Plass C (2013) The evolving epigenome. Hum Mol Genet 70:R1–R6

    Google Scholar 

  • Wiedemann HR (1964) Familial malformation complex with umbilical hernia and macroglossia—a “new syndrome”? J Genet Hum 13:223–232

    CAS  PubMed  Google Scholar 

  • Wilkinson MB, Dias C, Magida J, Mazei-Robison M, Lobo M, Kennedy P, Dietz D, Covington H 3rd, Russo S, Neve R, Ghose S, Tamminga C, Nestler EJ (2011) A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci 31:9084–9092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willemsen MH, Vulto-Van Silfhout AT, Nillesen WM, Wissink-Lindhout WM, Van Bokhoven H, Philip N, Berry-Kravis EM, Kini U, Van Ravenswaaij-Arts CM, Delle Chiaie B, Innes AM, Houge G, Kosonen T, Cremer K, Fannemel M, Stray-Pedersen A, Reardon W, Ignatius J, Lachlan K, Mircher C, Helderman Van Den Enden PT, Mastebroek M, Cohn-Hokke PE, Yntema HG, Drunat S, Kleefstra T (2012) Update on Kleefstra syndrome. Mol Syndromol 2:202–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams CA, Angelman H, Clayton-Smith J, Driscoll DJ, Hendrickson JE, Knoll JH, Magenis RE, Schinzel A, Wagstaff J, Whidden EM et al (1995) Angelman syndrome: consensus for diagnostic criteria. Angelman syndrome foundation. Am J Med Genet 56:237–238

    CAS  PubMed  Google Scholar 

  • Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G, Mcleod DR, Zondag S, Toriello HV, Magenis RE, Elsea SH (2010) Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet 87:219–228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, Melberg A, Cornelio F, Urban AE, Pizza F, Poli F, Grubert F, Wieland T, Graf E, Hallmayer J, Strom TM, Mignot E (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21:2205–2210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    PubMed  Google Scholar 

  • Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    CAS  PubMed  Google Scholar 

  • Xu XR, Fu R, Wang LY, Wang N, Zhang F, Le F, Li L, Li LJ, Liu XZ, Zheng YM, Lou HY, Jiang SW, Zhu XM, Huang HF, Jin F (2013) Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice. Curr Pharm Des. http://www.ncbi.nlm.nih.gov/pubmed/23909805

  • Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S (1999) Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Proc Natl Acad Sci U S A 96:6341–6346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S, Xiao X, Jia Y, Liu X, Zhang Y, Devor EJ, Meng X, Thiel KW, Leslie KK (2013) Epigenetic modification restores functional PR expression in endometrial cancer cells. Curr Pharm Des. http://www.ncbi.nlm.nih.gov/pubmed/23888956

  • Yong PJ, Marion SA, Barrett IJ, Kalousek DK, Robinson WP (2002) Evidence for imprinting on chromosome 16: the effect of uniparental disomy on the outcome of mosaic trisomy 16 pregnancies. Am J Med Genet 112:123–132

    CAS  PubMed  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    CAS  PubMed  Google Scholar 

  • Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, Mills GB, Bast RC Jr (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A 96:214–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zechner U, Pliushch G, Schneider E, El Hajj N, Tresch A, Shufaro Y, Seidmann L, Coerdt W, Muller AM, Haaf T (2010) Quantitative methylation analysis of developmentally important genes in human pregnancy losses after art and spontaneous conception. Mol Hum Reprod 16:704–713

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The support of Tasneem Hussain, M-OTR in the editing and review of this manuscript is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Hussain M.B.B.S., M.D., D.C.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hussain, N. (2014). Epigenetics in Childhood Health and Disease. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_1

Download citation

Publish with us

Policies and ethics