Skip to main content

Nitric Oxide and Endothelial Dysfunction

  • Chapter
  • First Online:
Studies on Pediatric Disorders

Abstract

Sun Tzu taught in The Art of War “If you know the enemy and know yourself, you need not fear the result of a hundred battles.” When it is necessary to understand cardiovascular and cerebrovascular diseases, atherosclerosis, chronic kidney diseases, and so on, it is important to know the normophysiology and pathophysiology of endothelial function. The development of oxidative stress in the earlier-mentioned diseases has long been suggested to relate to the balance of nitric oxide (NO) levels. The molecular structure of endothelial NO synthase (eNOS) has now been elucidated; eNOS consists of a C-terminal reductase domain and an N-terminal oxygenase domain and is homo-dimerized through a Cys99-Cys94 motif on each monomer with the coordination of zinc. Cys99 is the key residue that also participates in the binding of tetrahydrobiopterin (BH4) and L-arginine to produce NO. When these factors are lacking, the enzyme can uncouple to produce superoxide. In this short review, selected key topics essential to understanding the biologic significance of NO and eNOS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMA:

Asymmetrical dimethyl arginine

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ARE/EpRE:

Antioxidant/electrophile-responsive element

ATP:

Adenosine triphosphate

BH4:

Tetrahydrobiopterin

CKD:

Chronic kidney disease

COX-2:

Cyclooxygenase-2

Cys:

Cysteine

DDAH1:

Dimethylarginine dimethylaminohydrolase-1

eNOS:

Endothelial NO synthase

ESRD:

End-stage renal disease

GMP:

Guanosine monophosphate

GTP:

Guanosine triphosphate

L-FABP:

L-type fatty acid-binding protein

L-NAME:

Ng-nitro-l-arginine methyl

L-NMMA:

Ng-monomethyl-L-arginine

5-MTHF:

5-Methyltetrahydrofolate

5-MTHFR:

5, 10-Methylenetetrahydrofolate reductase

NADPH:

Nicotinamide adenine dinucleotide phosphate

8-nitro-cGMP:

8-Nitroguanosine 3′ 5′-cyclic monophosphate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

OA-NO2 :

Nitro fatty acids

15d-PGJ2 :

15-Deoxy-∆12,14-prostaglandin J2

RNOS:

Reactive nitrogen oxide species

SNO-hemoglobin:

S-nitrosohemoglobin

References

  1. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA et al (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  CAS  PubMed  Google Scholar 

  2. Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O et al (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Natl Acad Sci U S A 102:10616–10621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hu X, Xu X, Zhu G, Atzler D, Kimoto M, Chen J et al (2009) Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine. Circulation 120:2222–2229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Boerrigter G, Burnett JC Jr (2009) Soluble guanylate cyclase: not a dull enzyme. Circulation 119:2752–2754

    Article  PubMed  Google Scholar 

  5. Mount PF, Kemp BE, Power DA (2007) Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol 42:271–279

    Article  CAS  PubMed  Google Scholar 

  6. Noiri E, Hu Y, Bahou WF, Keese CR, Giaever I, Goligorsky MS (1997) Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 272:1747–1752

    Article  CAS  PubMed  Google Scholar 

  7. Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR et al (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol Cell Physiol 274:C236–C244

    CAS  Google Scholar 

  8. Noiri E, Peresleni T, Srivastava N, Weber P, Bahou WF, Peunova N et al (1996) Nitric oxide is necessary for a switch from stationary to locomoting phenotype in epithelial cells. Am J Physiol Cell Physiol 270:C794–C802

    CAS  Google Scholar 

  9. Goligorsky MS, Budzikowski AS, Tsukahara H, Noiri E (1999) Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin Exp Pharmacol Physiol 26:269–271

    Article  CAS  PubMed  Google Scholar 

  10. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  11. Noiri E, Taguchi J, Nakao A, Fujita T (2000) MTHFR gene polymorphism as an exacerbation factor of diabetic nephropathy in type 2 diabetes. Analysis in Japanese male hemodialysis patients. Diabetes Care 23:260

    Article  CAS  PubMed  Google Scholar 

  12. Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C et al (2009) MTHFR 677 C > T Polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 119:2507–2515

    Article  CAS  PubMed  Google Scholar 

  13. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  CAS  PubMed  Google Scholar 

  14. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang D, Chen Y, Chabrashvili T, Aslam S, Borrego Conde LJ, Umans JG et al (2003) Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II. J Am Soc Nephrol 14:2783–2789

    Article  CAS  PubMed  Google Scholar 

  16. Doi K, Noiri E, Nakao A, Fujita T, Kobayashi S, Tokunaga K (2005) Haplotype analysis of NAD(P)H oxidase p22 phox polymorphisms in end-stage renal disease. J Hum Genet 50:641–647

    Article  CAS  PubMed  Google Scholar 

  17. Hibi K, Ishigami T, Tamura K, Mizushima S, Nyui N, Fujita T et al (1998) Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension 32:521–526

    Article  CAS  PubMed  Google Scholar 

  18. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M et al (1998) Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 32:3–8

    Article  CAS  PubMed  Google Scholar 

  19. Lembo G, De Luca N, Battagli C, Iovino G, Aretini A, Musicco M et al (2001) A common variant of endothelial nitric oxide synthase (Glu298Asp) is an independent risk factor for carotid atherosclerosis. Stroke 32:735–740

    Article  CAS  PubMed  Google Scholar 

  20. Yoshimura T, Yoshimura M, Tabata A, Shimasaki Y, Nakayama M, Miyamoto Y et al (2000) Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with severe preeclampsia. J Soc Gynecol Investig 7:238–241

    Article  CAS  PubMed  Google Scholar 

  21. Noiri E, Satoh H, Taguchi J, Brodsky SV, Nakao A, Ogawa Y et al (2002) Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension 40:535–540

    Article  CAS  PubMed  Google Scholar 

  22. Tsukahara H, Gordienko DV, Goligorsky MS (1993) Continuous monitoring of nitric oxide release from human umbilical vein endothelial cells. Biochem Biophys Res Commun 193:722–729

    Article  CAS  PubMed  Google Scholar 

  23. McMillan MA, Briggs JD, Junor BJ (1990) Outcome of renal replacement treatment in patients with diabetes mellitus. BMJ 301:540–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Philip I, Plantefeve G, Vuillaumier-Barrot S, Vicaut E, LeMarie C, Henrion D et al (1999) G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine. Circulation 99:3096–3098

    Article  CAS  PubMed  Google Scholar 

  25. Naber CK, Baumgart D, Altmann C, Siffert W, Erbel R, Heusch G (2001) eNOS 894T allele and coronary blood flow at rest and during adenosine-induced hyperemia. Am J Physiol Heart Circ Physiol 281:H1908–H1912

    CAS  PubMed  Google Scholar 

  26. Cherney DZ, Scholey JW, Zhou J, Zimpelmann J, Kennedy C, Burns KD et al (2009) Endothelial nitric oxide synthase gene polymorphisms and the renal hemodynamic response to L-arginine. Kidney Int 75:327–332

    Article  CAS  PubMed  Google Scholar 

  27. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T et al (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281:F948–F957

    CAS  PubMed  Google Scholar 

  28. Joshi MS, Ferguson TB Jr, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR Jr (2007) Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci U S A 104:9982–9987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Addabbo F, Ratliff B, Park HC, Kuo MC, Ungvari Z, Csiszar A et al (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 174:34–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stoessel A, Paliege A, Theilig F, Addabbo F, Ratliff B, Waschke J et al (2008) Indolent course of tubulointerstitial disease in a mouse model of subpressor, low-dose nitric oxide synthase inhibition. Am J Physiol Renal Physiol 295:F717–F725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lee YC, Martin E, Murad F (2000) Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc Natl Acad Sci U S A 97:10763–10768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch KD et al (1990) Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 190:273–278

    Article  CAS  PubMed  Google Scholar 

  33. Castillo L, Beaumier L, Ajami AM, Young VR (1996) Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling. Proc Natl Acad Sci U S A 93:11460–11465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    Article  CAS  PubMed  Google Scholar 

  35. Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA et al (2000) Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A 97:11482–11487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cannon RO III, Schechter AN, Panza JA, Ognibene FP, Pease-Fye ME, Waclawiw MA et al (2001) Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Invest 108:279–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W et al (2005) Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 115:1232–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A 101:13683–13688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK et al (2006) Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 37:2744–2750

    Article  CAS  PubMed  Google Scholar 

  40. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  CAS  PubMed  Google Scholar 

  41. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NOsignaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32:370–374

    Article  CAS  PubMed  Google Scholar 

  42. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  CAS  PubMed  Google Scholar 

  43. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M et al (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101:16507–16512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM et al (2000) Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem 275:20474–20479

    Article  CAS  PubMed  Google Scholar 

  45. Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem 273:31437–31441

    Article  CAS  PubMed  Google Scholar 

  46. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L et al (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-Based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Friling RS, Bensimon A, Tichauer Y, Daniel V (1990) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci U S A 87:6258–6262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266:11632–11639

    CAS  PubMed  Google Scholar 

  51. Itoh K, Mochizuki M, Ishii Y, Ishii T, Shibata T, Kawamoto Y et al (2004) Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Mol Cell Biol 24:36–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. McMahon M, Lamont DJ, Beattie KA, Hayes JD (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107:18838–18843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Um HC, Jang JH, Kim DH, Lee C, Surh YJ (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168

    Article  CAS  PubMed  Google Scholar 

  54. Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S et al (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat Chem Biol 3:727–735

    Article  CAS  PubMed  Google Scholar 

  55. Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T et al (2010) The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem 285:23970–23984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H et al (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286:14019–14027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tsujita T, Li L, Nakajima H, Iwamoto N, Nakajima-Takagi Y, Ohashi K et al (2011) Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: a study using green fluorescent protein transgenic zebrafish. Genes Cells 16:46–57

    Article  CAS  PubMed  Google Scholar 

  58. Olson JL (2007) Renal disease caused by hypertension. In: Chap 21, Heptinstall’s pathology of the kidney, 6th edn. Lippincott Williams & Wilkins, Philadelphia, p 960

    Google Scholar 

  59. Noiri E, Doi K, Negishi K, Tanaka T, Hamasaki Y, Fujita T et al (2009) Urinary fatty acid-binding protein 1: an early predictive biomarker of kidney injury. Am J Physiol Renal Physiol 296:F669–F679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A et al (2007) Renal L-type fatty acid—binding protein in acute ischemic injury. J Am Soc Nephrol 18:2894–2902

    Article  CAS  PubMed  Google Scholar 

  61. Araki S, Haneda M, Koya D, Sugaya T, Isshiki K, Kume S et al (2013) Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy. Diabetes Care 36:1248–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Nakamura T, Sugaya T, Kawagoe Y, Ueda Y, Osada S, Koide H (2005) Effect of pitavastatin on urinary liver-type fatty acid-binding protein levels in patients with early diabetic nephropathy. Diabetes Care 28:2728–2732

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen SE, Sugaya T, Hovind P, Baba T, Parving HH, Rossing P (2010) Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care 33:1320–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  65. Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N et al (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci U S A 102:4584–4589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Pergola PE, Krauth M, Huff JW, Ferguson DA, Ruiz S, Meyer CJ et al (2011) Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b–4 CKD. Am J Nephrol 33:469–476

    Article  CAS  PubMed  Google Scholar 

  67. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB et al (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365:327–336

    Article  CAS  PubMed  Google Scholar 

  68. Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisei Noiri M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Noiri, E., Minami, K. (2014). Nitric Oxide and Endothelial Dysfunction. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_4

Download citation

Publish with us

Policies and ethics