Skip to main content

Nitrite-Dependent Nitric Oxide Production Pathway: Diversity of NO Production Systems

  • Chapter
  • First Online:

Abstract

Oxidative stress arises from the uncontrolled actions of reactive oxygen species (ROS) that originate from O2 taken into the cells. Following the discovery of versatile functions for the radical nitric oxide (NO) in mammals, research has focused on the roles played by reactive nitrogen species (RNS), including NO, in disorders and diseases associated with oxidative stress. Previously, the nitric oxide synthase (NOS) system was thought to be the sole enzymatic mechanism for NO production in mammals. More recently, accumulating evidence has revealed the nitrite-dependent NO production pathway to be another important mechanism. This chapter provides an overview of our current knowledge of NO production from nitrite with emphasis on the features that distinguish it from NOS-catalyzed l-arginine-dependent NO synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AsA:

Ascorbate

DHA:

Dehydroascorbate

dNiR:

Dissimilatory nitrite reductase

eNOS:

Endothelial nitric oxide synthase

HO1:

Heme oxygenase-1

iNOS:

Inducible nitric oxide synthase

MDA:

Monodehydroascorbate

NADPH:

Nicotinamide adenine dinucleotide phosphate

NiR:

Nitrite reductase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NR:

Nitrate reductase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

US EPA:

United States Environmental Protection Agency

XOR:

Xanthine oxidoreductase

References

  1. Comly HH (1945) Cyanosis in infants caused by nitrates in well water. JAMA 129(2):112–116. doi:10.1001/jama.1945.02860360014004

    Article  CAS  Google Scholar 

  2. Knobeloch L, Salna B, Hogan A, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolff IA, Wasserman AE (1972) Nitrates, nitrates & nitrosamines. Science 177:15–19

    Article  CAS  PubMed  Google Scholar 

  4. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    Article  CAS  PubMed  Google Scholar 

  5. Cohen MF, Yamasaki H (2003) Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 9:1–9

    Article  CAS  PubMed  Google Scholar 

  6. Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49(4):641–652

    Article  CAS  PubMed  Google Scholar 

  8. Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    Article  CAS  Google Scholar 

  9. Hsu J, Arcot J, Alice Lee N (2009) Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food Chem 115(1):334–339. doi:10.1016/j.foodchem.2008.11.081

    Article  CAS  Google Scholar 

  10. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90(1):1–10. doi:10.3945/ajcn.2008.27131

    Article  CAS  PubMed  Google Scholar 

  11. L’hirondel J, L’hirondel JL (2002) Nitrate and man: toxic, harmless or beneficial? CABI Publishing, Oxon

    Google Scholar 

  12. Lundberg JO, Feelisch M, Björne H, Jansson E, Weitzberg E (2006) Cardioprotective effects of vegetables: Is nitrate the answer? Nitric Oxide 15(4):359–362. doi:10.1016/j.niox.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  13. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204(9):2089–2102. doi:10.1084/jem.20070198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sobko T, Marcus C, Govoni M, Kamiya S (2010) Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide 22(2):136–140

    Article  CAS  PubMed  Google Scholar 

  15. Wright MJ, Davison KL (1964) Nitrate accumulation in crops and nitrate poisoning in animals. Adv Agron 16:197–247

    Article  CAS  Google Scholar 

  16. Zhen R, Leigh R (1990) Nitrate accumulation by wheat (Triticum aestivum) in relation to growth and tissue N concentrations. Plant and Soil 124(2):157–160. doi:10.1007/bf00009253

    Article  CAS  Google Scholar 

  17. Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, Cannon RO, Kelm M, Wink DA, Espey MG (2005) The emerging biology of the nitrite anion. Nat Chem Biol 1(6):308–314

    Article  CAS  PubMed  Google Scholar 

  18. Keeton JT (2011) History of nitrite and nitrate in food. In: Bryan NS, Loscalzo J (eds) Nitrite and nitrate in human health and disease. Springer, New York, pp 69–84

    Chapter  Google Scholar 

  19. Honikel K-O (2008) The use and control of nitrate and nitrite for the processing of meat products. Meat Sci 78(1–2):68–76. doi:10.1016/j.meatsci.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  20. US EPA (2009) National primary drinking water regulations. Document no. EPA 816-F-09-004

    Google Scholar 

  21. Manning PB, Coulter ST, Jenness R (1968) Determination of nitrate and nitrite in milk and dry milk products. J Dairy Sci 51(11):1725–1730

    Article  CAS  PubMed  Google Scholar 

  22. Somogyi A, Beck H (1993) Nurturing and breast-feeding: exposure to chemicals in breast milk. Environ Health Perspect 101(suppl 2):45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hord NG, Ghannam JS, Garg HK, Berens PD, Bryan NS (2011) Nitrate and nitrite content of human, formula, bovine, and soy milks: implications for dietary nitrite and nitrate recommendations. Breastfeed Med 6(6):393–399

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kanady JA, Aruni AW, Ninnis JR, Hopper AO, Blood JD, Byrd BL, Holley LR, Staker MR, Hutson S, Fletcher HM, Power GG, Blood AB (2012) Nitrate reductase activity of bacteria in saliva of term and preterm infants. Nitric Oxide 27(4):193–200, doi: http://dx.doi.org/10.1016/j.niox.2012.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song BJ, Jouni ZE, Ferruzzi MG (2013) Assessment of phytochemical content in human milk during different stages of lactation. Nutrition 29(1):195–202, doi: http://dx.doi.org/10.1016/j.nut.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell H, Shonle H, Grindley H (1916) The origin of the nitrates in the urine. J Biol Chem 24(4):461–490

    CAS  Google Scholar 

  27. Hibbs J Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235(4787):473–476

    Article  CAS  PubMed  Google Scholar 

  28. Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2(9):486–493

    Article  CAS  PubMed  Google Scholar 

  29. Arita NO, Cohen MF, Tokuda G, Yamasaki H (2006) Fluorometric detection of nitric oxide with diaminofluoresceins (DAFs): applications and limitations for plant NO research. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology, Springer book series: plant cell monographs. Springer, Heidelberg, pp 269–280

    Google Scholar 

  30. Miles AM, Wink DA, Cook JC, Grisham MB (1996) Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol 268:105–120

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt K, Mayer B (1998) Determination of NO with a Clark-type electrode. In: Titheradge MA (ed) Nitric oxide protocols. Humana Press, Totowa, pp 101–109

    Google Scholar 

  32. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355(1402):1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weitzberg E, Lundberg J (1998) Nonenzymatic nitric oxide production in humans. Nitric Oxide 2(1):1–7

    Article  CAS  PubMed  Google Scholar 

  34. Evans HJ, McAuliffe C (1956) Identification of NO, N2O, and N2 as products of the nonenzymatic reduction of nitrite by ascorbate or reduced diphosphopyridine nucleotide. In: McElroy WD, Glass B (eds) Inorganic nitrogen metabolism. Johns Hopkins Press, Baltimore, pp 189–197

    Google Scholar 

  35. Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1):67–80

    Article  CAS  PubMed  Google Scholar 

  36. Yamasaki H, Uefuji H, Sakihama Y (1996) Bleaching of the red anthocyanin induced by superoxide radical. Arch Biochem Biophys 332(1):183–186

    Article  CAS  PubMed  Google Scholar 

  37. Peri L, Pietraforte D, Scorza G, Napolitano A, Fogliano V, Minetti M (2005) Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Free Radic Biol Med 39(5):668–681

    Article  CAS  PubMed  Google Scholar 

  38. Dijkers PF, O’Farrell PH (2009) Dissection of a hypoxia-induced, nitric oxide–mediated signaling cascade. Mol Biol Cell 20(18):4083–4090. doi:10.1091/mbc.E09-05-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ho J, Man H, Marsden P (2012) Nitric oxide signaling in hypoxia. J Mol Med 90(3):217–231. doi:10.1007/s00109-012-0880-5

    Article  CAS  PubMed  Google Scholar 

  40. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505, doi: http://www.nature.com/nm/journal/v9/n12/suppinfo/nm954_S1.html

  41. Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100(5):654–661. doi:10.1161/01.RES.0000260171.52224.6b

    Article  CAS  PubMed  Google Scholar 

  42. Jensen FB, Rohde S (2010) Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies. Am J Physiol Regul Integr Comp Physiol 298(4):R972–R982. doi:10.1152/ajpregu.00813.2009

    Article  CAS  PubMed  Google Scholar 

  43. Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286(20):18277–18289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li H, Hemann C, Abdelghany TM, El-Mahdy MA, Zweier JL (2012) Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J Biol Chem 287(43):36623–36633. doi:10.1074/jbc.M112.342378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tiso M, Tejero J, Kenney C, Frizzell S, Gladwin MT (2012) Nitrite reductase activity of nonsymbiotic hemoglobins from Arabidopsis thaliana. Biochemistry 51(26):5285–5292

    Article  CAS  PubMed  Google Scholar 

  46. Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci U S A 93(12):5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275(11):7757–7763. doi:10.1074/jbc.275.11.7757

    Article  CAS  PubMed  Google Scholar 

  48. Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR (1998) Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett 427(2):225–228. doi:10.1016/s0014-5793(98)00430-x

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Samouilov A, Liu X, Zweier JL (2001) Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. J Biol Chem 276(27):24482–24489. doi:10.1074/jbc.M011648200

    Article  CAS  PubMed  Google Scholar 

  50. Casey DB, Badejo AM, Dhaliwal JS, Murthy SN, Hyman AL, Nossaman BD, Kadowitz PJ (2009) Pulmonary vasodilator responses to sodium nitrite are mediated by an allopurinol-sensitive mechanism in the rat. Am J Physiol Heart Circ Physiol 296(2):H524–H533. doi:10.1152/ajpheart.00543.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A 101(37):13683–13688. doi:10.1073/pnas.0402927101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tosha T, Shiro Y (2013) Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. IUBMB Life 65(3):217–226. doi:10.1002/iub.1135

    Article  CAS  PubMed  Google Scholar 

  53. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3(4):277–287, doi: http://dx.doi.org/10.1016/j.cmet.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  54. Shiva S (2013) Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol 1(1):40–44, doi: http://dx.doi.org/10.1016/j.redox.2012.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson IC, Levine JS (1986) Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl Environ Microbiol 51(5):938–945

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley-VCH, Weinheim, pp 161–172

    Google Scholar 

  57. Ducluzeau A-L, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34(1):9–15. doi:10.1016/j.tibs.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  58. Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55(408):2473–2482

    Article  CAS  PubMed  Google Scholar 

  59. Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol 82(3):718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4(4):128–129

    Article  PubMed  Google Scholar 

  61. Gilberthorpe NJ, Poole RK (2008) Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J Biol Chem 283(17):11146–11154

    Article  CAS  PubMed  Google Scholar 

  62. Vine CE, Purewal SK, Cole JA (2011) NsrR-dependent method for detecting nitric oxide accumulation in the Escherichia coli cytoplasm and enzymes involved in NO production. FEMS Microbiol Lett 325(2):108–114. doi:10.1111/j.1574-6968.2011.02385.x

    Article  CAS  PubMed  Google Scholar 

  63. Tripathi P, Tripathi P, Kashyap L, Singh V (2007) The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol 51(3):443–452. doi:10.1111/j.1574-695X.2007.00329.x

    Article  CAS  PubMed  Google Scholar 

  64. Modolo LV, Augusto O, Almeida IMG, Magalhaes JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579(17):3814–3820. doi:10.1016/j.febslet.2005.05.078

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira HC, Saviani EE, Oliveira JFP, Salgado I (2010) Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae. Trop Plant Pathol 35:104–107

    Article  Google Scholar 

  66. Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita K (2003) Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J Gen Plant Pathol 69(4):218–229. doi:10.1007/s10327-003-0039-x

    Article  CAS  Google Scholar 

  67. Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol 47(6):726–735. doi:10.1093/pcp/pcj044

    Article  CAS  PubMed  Google Scholar 

  68. Lundberg JO, Weitzberg E, Shiva S, Gladwin MT (2011) The nitrate–nitrite–nitric oxide pathway in mammals. In: Byan NS, Loscalzo L (eds) Nitrite and nitrate in human health and disease. Springer, New York, pp 21–48

    Chapter  Google Scholar 

  69. Flores-Santana W, Switzer C, Ridnour L, Basudhar D, Mancardi D, Donzelli S, Thomas D, Miranda K, Fukuto J, Wink D (2009) Comparing the chemical biology of NO and HNO. Arch Pharm Res 32(8):1139–1153. doi:10.1007/s12272-009-1805-x

    Article  CAS  PubMed  Google Scholar 

  70. Fukuto JM, Carrington SJ (2011) HNO signaling mechanisms. Antioxid Redox Signal 14:1649–1657

    Article  CAS  PubMed  Google Scholar 

  71. Switzer CH, Flores-Santana W, Mancardi D, Donzelli S, Basudhar D, Ridnour LA, Miranda KM, Fukuto JM, Paolocci N, Wink DA (2009) The emergence of nitroxyl (HNO) as a pharmacological agent. Biochim Biophys Acta 1787(7):835–840. doi:10.1016/j.bbabio.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Myshkin AE, Konyaeva VS, Gumargalieva KZ, Moiseev YV (1991) Mechanism of nitrosation of ascorbic acid by nitrite in neutral aqueous media. Russ Chem Bull 40(10):1961–1965. doi:10.1007/bf00963487

    Article  Google Scholar 

  73. Kirsch M, Buscher A-M, Aker S, Schulz R, de Groot H (2009) New insights into the S-nitrosothiol-ascorbate reaction. The formation of nitroxyl. Org Biomol Chem 7(9):1954–1962

    Article  CAS  PubMed  Google Scholar 

  74. Marnett LJ, Riggins JN, West JD (2003) Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 111(5):583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sakihama Y, Tamaki R, Shimoji H, Ichiba T, Fukushi Y, Tahara S, Yamasaki H (2003) Enzymatic nitration of phytophenolics: evidence for peroxynitrite-independent nitration of plant secondary metabolites. FEBS Lett 553(3):377–380

    Article  CAS  PubMed  Google Scholar 

  76. Sampson JB, Ye YZ, Rosen H, Beckman JS (1998) Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys 356(2):207–213

    Article  CAS  PubMed  Google Scholar 

  77. Boyland E, Nice E, Williams K (1971) The catalysis of nitrosation by thiocyanate from saliva. Food Cosmet Toxicol 9(5):639–643

    Article  CAS  PubMed  Google Scholar 

  78. Roediger WEW (2008) Review article: nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment Pharmacol Ther 27(7):531–541. doi:10.1111/j.1365-2036.2008.03612.x

    Article  CAS  PubMed  Google Scholar 

  79. McKnight GM, Duncan CW, Leifert C, Golden MH (1999) Dietary nitrate in man: friend or foe? Br J Nutr 81:349–358

    Article  CAS  PubMed  Google Scholar 

  80. Sobko T, Reinders CI, Jansson E, Norin E, Midtvedt T, Lundberg JO (2005) Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide 13(4):272–278. doi:10.1016/j.niox.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  81. Sobko T, Elfström K, Navér L, Lundberg JO, Norman M (2009) Intestinal hydrogen and nitric oxide gases in preterm infants—effects of antibiotic therapy. Neonatology 95:68–73

    Article  CAS  PubMed  Google Scholar 

  82. Sobko T, Huang L, Midtvedt T, Norin E, Gustafsson LE, Norman M, Jansson E, Lundberg JO (2006) Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic Biol Med 41(6):985–991. doi:10.1016/j.freeradbiomed.2006.06.020

    Article  CAS  PubMed  Google Scholar 

  83. Kapil V, Haydar S, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A (2013) Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med 55(1):93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, Arghandawi S, Pearl V, Benjamin N, Loukogeorgakis S (2010) Inorganic nitrate supplementation lowers blood pressure in humans role for nitrite-derived NO. Hypertension 56(2):274–281

    Article  CAS  PubMed  Google Scholar 

  85. Martin RM, Gunnell D, Davey Smith G (2005) Breastfeeding in infancy and blood pressure in later life: systematic review and meta-analysis. Am J Epidemiol 161(1):15–26

    Article  PubMed  Google Scholar 

  86. Pintucci JP, Corno S, Garotta M (2010) Biofilms and infections of the upper respiratory tract. Eur Rev Med Pharmacol Sci 14:683–690

    CAS  PubMed  Google Scholar 

  87. Bjarnsholt T, Jensen P, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44(6):547–558. doi:10.1002/ppul.21011

    Article  PubMed  Google Scholar 

  88. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59(3):253–268. doi:10.1111/j.1574-695X.2010.00690.x

    CAS  PubMed  Google Scholar 

  89. Pinar E, Oncel S, Karagoz U, Sener G, Calli C, Tatar B (2008) Demonstration of bacterial biofilms in chronic otitis media. Mediterr J Otol 4:64–68

    Google Scholar 

  90. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31. doi:10.1016/j.freeradbiomed.2008.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hotchkiss J (1988) Nitrate, nitrite balance, and de novo synthesis of nitrate. Am J Clin Nutr 47(1):161–162

    CAS  PubMed  Google Scholar 

  92. Capra F (1975) The Tao of physics: an exploration of the parallels between modern physics and eastern mysticism. Shambhala, Berkeley

    Google Scholar 

  93. Navarro González R, McKay CP, Nna Mvondo D (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 64:61–64

    Article  Google Scholar 

  94. Calvert JW, Lefer DJ (2010) Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide 22(2):91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ohta N, Tsukahara H, Ohshima Y, Nishii M, Ogawa Y, Sekine K, Kasuga K, Mayumi M (2004) Nitric oxide metabolites and adrenomedullin in human breast milk. Early Hum Dev 78(1):61–65

    Article  CAS  PubMed  Google Scholar 

  96. Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, Shinozaki M (1999) Non-enzymatic nitric oxide generation in the stomachs of breastfed neonates. Acta Paediatr 88(10):1053–1055

    Article  CAS  PubMed  Google Scholar 

  97. Fulhan J, Collier S, Duggan C (2003) Update on pediatric nutrition: breastfeeding, infant nutrition, and growth. Curr Opin Pediatr 15(3):323–332

    Article  PubMed  Google Scholar 

  98. Shu XO, Linet MS, Steinbuch M, Wen WQ, Buckley JD, Neglia JP, Potter JD, Reaman GH, Robison LL (1999) Breast-feeding and risk of childhood acute leukemia. J Natl Cancer Inst 91(20):1765–1772

    Article  CAS  PubMed  Google Scholar 

  99. Rich-Edwards JW, Stampfer MJ, Manson JAE, Rosner B, Hu FB, Michels KB, Willett WC (2004) Breastfeeding during infancy and the risk of cardiovascular disease in adulthood. Epidemiology 15(5):550–556

    Article  PubMed  Google Scholar 

  100. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912

    Article  CAS  PubMed  Google Scholar 

  101. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory (H.Y.) was supported by a Grant-in-Aid for Scientific Research (B) from Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Yamasaki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamasaki, H., Watanabe, N.S., Fukuto, J., Cohen, M.F. (2014). Nitrite-Dependent Nitric Oxide Production Pathway: Diversity of NO Production Systems. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_3

Download citation

Publish with us

Policies and ethics