Skip to main content

Reactive Oxygen Species and Nitric Oxide in Vascular Function

  • Chapter
  • First Online:

Abstract

This chapter considers systems controlling the origins and mechanisms through which nitric oxide (NO) and reactive oxygen species (ROS) regulate vascular function. Oxidases in various cell types within and surrounding the vasculature such as endothelium, vascular smooth muscle, and inflammatory cells are sources of NO and ROS that regulate vascular function through many processes controlling the activities of specific NO synthase (NOS) and oxidase enzymes. Each NO and ROS has specific chemical properties and interactions with enzymes and/or cofactors. Many of these interactions enable them to control signaling processes regulating the function of cells in the vasculature ranging from physiological mechanisms such as oxygen sensing, to many pathophysiological processes (increased pressure, shear, vascular disease-associated vasoconstrictors) altering the regulation of vascular function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ecSOD:

Extracellular superoxide dismutase (SOD3)

eNOS:

Endothelial nitric oxide synthase (NOS3)

ETC:

Electron transport chain

H2O2 :

Hydrogen peroxide

HPV:

Hypoxic pulmonary vasoconstriction

NADH:

Nicotinamide adenine dinucleotide (reduced)

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

NAD(P)H:

NADH and NADPH

NO:

Nitric oxide

iNOS:

Inducible or inflammatory nitric oxide synthase (NOS2)

nNOS:

Neuronal nitric oxide synthase (NOS1)

NOS:

Nitric oxide synthase

Nox:

NADPH oxidase

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

O2 :

Superoxide anion

PG:

Prostaglandin

PKG:

Protein kinase G

RNS:

Reactive nitric oxide-derived species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127

    Article  CAS  PubMed  Google Scholar 

  2. Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ata H, Rawat DK, Lincoln T, Gupte SA (2011) Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility. Am J Physiol Heart Circ Physiol 300:H2054–H2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Boueiz A, Damarla M, Hassoun PM (2008) Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 294:L830–L840

    Article  CAS  PubMed  Google Scholar 

  5. Dai D-F, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110:1109–1124

    Article  CAS  PubMed  Google Scholar 

  6. Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299:H673–H679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

  8. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:246–256

    Article  Google Scholar 

  9. Gupte SA, Kaminski PM, George S, Kouznestova L, Olson SC, Matthew R, Hintze TH, Wolin MS (2009) Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am J Physiol Heart Circ Physiol 296:H1048–H1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gupte RS, Rawat DK, Chettimada S, Cioffi DL, Wolin MS, Gerthoffer WT, McMurtry IF, Gupte SA (2010) Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction. J Biol Chem 285:19561–19571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ignarro LJ, Byrns RE, Buga GM, Wood KS, Chaudhuri G (1988) Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther 244:181–189

    CAS  PubMed  Google Scholar 

  12. Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986) PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 59:612–619

    Article  CAS  PubMed  Google Scholar 

  13. Lassègue B, San Martín A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390

    Article  PubMed Central  PubMed  Google Scholar 

  14. Li A-M, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030

    Article  CAS  PubMed  Google Scholar 

  15. Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    CAS  PubMed  Google Scholar 

  16. Luiking YC, Ten Have GAM, Wolfe RR, Deutz NEP (2012) Arginine de novo and nitric oxide production in disease states. Am J Physiol Endocrinol Metab 303:E1177–E1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  18. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390–403

    Article  CAS  PubMed  Google Scholar 

  19. Neo BH, Kandhi S, Ahmad M, Wolin MS (2010) Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia. Respir Physiol Neurobiol 174:259–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  PubMed  Google Scholar 

  21. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJA (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291:R491–R511

    Article  CAS  PubMed  Google Scholar 

  23. Stasch J-P, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, Arun Kumar HSA, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Müller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Müller-Esterl W, Schmidt HHHW (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ungvari Z, Wolin MS, Csiszar A (2006) Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling? Antioxid Redox Signal 8:1121–1129

    Article  CAS  PubMed  Google Scholar 

  25. Waypa GB, Schumacker PT (2005) Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol 98:404–414

    Article  CAS  PubMed  Google Scholar 

  26. Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wolin MS (2000) Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol 20:1430–1442

    Article  CAS  PubMed  Google Scholar 

  28. Wolin MS, Ahmad M, Gupte SA (2005) Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289:L159–L173

    Article  CAS  PubMed  Google Scholar 

  29. Zhang G, Zhang F, Muh R, Yi F, Chalupsky K, Cai H, Li PL (2007) Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes. Am J Physiol Heart Circ Physiol 292:H483–H495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Recent studies from the authors’ laboratory have been funded by USPHS grants HL031069, HL043023, HL066331, and HL115124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Wolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wolin, M.S. (2014). Reactive Oxygen Species and Nitric Oxide in Vascular Function. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_2

Download citation

Publish with us

Policies and ethics