Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This book chapter introduces the principles of membrane electrodes, including potentiometric sensors, in view of their use in environmental analysis. The initial part of the chapter reviews essential response and selectivity theory: phase boundary potential and Nernst equation, selective extraction/permeation, modern selectivity theory and theory of trace-level potentiometry (passive ion fluxes). This is followed by a review of key materials and an overview of ions that can be detected by potentiometry with relevance to the environment: solid-state and polymeric membrane electrodes, corrosion-based potentiometric sensors and chalcogenide sensors. Achievable detection limits are discussed as well. The last part of the chapter covers dynamic electrochemistry approaches with membrane electrodes. Key protocols to be discussed include cyclic voltammetry, stripping voltammetry, exhaustive coulometry and chronopotentiometry, as well as their combination with potentiometry for in situ ion speciation analysis. This last part aims to bring to attention recent developments that will likely have a lasting impact on this class of sensors in the immediate future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meier PC (1982) 2-Parameter Debye-Huckel approximation for the evaluation of mean activity-coefficients of 109 electrolytes. Anal Chim Acta 136:363–368

    Article  CAS  Google Scholar 

  2. Morf WE (1981) In the principles of ion-selective electrodes and of membrane transport. Elsevier, New York

    Google Scholar 

  3. DeLaune RD, Reddy KR (2005) Redox potential. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 366–371

    Google Scholar 

  4. Noyhouzer T, Valdinger I, Mandler D (2013) Enhanced potentiometry by metallic nanoparticles. Anal Chem 85:8347–8353

    Article  CAS  Google Scholar 

  5. Bergren AJ, Porter MD (2005) Electrochemical amplification using selective self-assembled alkanethiolate monolayers on gold: a predictive mechanistic model. J Electroanal Chem 585:172–180

    Article  CAS  Google Scholar 

  6. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  7. Jacobs E, Ancy JJ, Smith M (2002) Multi-site performance evaluation of pH, blood gas, electrolyte, glucose, and lactate determinations with the GEM Premier 3000 critical care analyzer. Point Care J Near-Patient Test Technol 1:135–144

    Article  Google Scholar 

  8. Müller B, Reinhardt M, Gächter R (2003) High temporal resolution monitoring of inorganic nitrogen load in drainage waters. J Environ Monit 5:808–812

    Article  Google Scholar 

  9. Lindner E, Pendley BD (2013) A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls. Anal Chim Acta 762:1–13

    Article  CAS  Google Scholar 

  10. Bakker E, Pretsch E (2001) Potentiometry at trace levels. Trends Anal Chem 20:11–19

    Article  CAS  Google Scholar 

  11. Morf WE, Lindner E, Simon W (1975) Theoretical treatment of the dynamic response of ion-selective membrane electrodes. Anal Chem 47:1596–1601

    Article  CAS  Google Scholar 

  12. Morf WE, Pretsch E, De Rooij NF (2007) Computer simulation of ion-selective membrane electrodes and related systems by finite-difference procedures. J Electroanal Chem 602:43–54

    Article  CAS  Google Scholar 

  13. Fritz JJ (1985) Thermodynamic properties of chloro-complexes of silver chloride in aqueous solution. J Solution Chem 14:865–879

    Article  CAS  Google Scholar 

  14. Kakiuchi T, Yoshimatsu T, Nishi N (2007) New class of Ag/AgCl electrodes based on hydrophobic ionic liquid saturated with AgCl. Anal Chem 79:7187–7191

    Article  CAS  Google Scholar 

  15. Cammann K (1996) Das Arbeiten mit Ionenselektiven Electroden, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  16. Schulthess P, Shijo Y, Pham HV, Pretsch E, Ammann D, Simon W (1981) A hydrogen ion-selective liquid-membrane electrode based on tri-n-dodecylamine as neutral carrier. Anal Chim Acta 131:111–116

    Article  CAS  Google Scholar 

  17. Cosofret VV, Nahir TM, Lindner E, Buck RP (1992) New neutral carrier-based H+ selective membrane electrodes. J Electroanal Chem 327:137–146

    Article  CAS  Google Scholar 

  18. Suzuki K, Yamada H, Sato K, Watanabe K, Hisamoto H, Tobe Y et al (1993) Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode. Anal Chem 65:3404–3410

    Article  CAS  Google Scholar 

  19. Diamond D, Svehla G, Seward EM, McKervey MA (1988) A sodium ion-selective electrode based on methyl p-t-butylcalix[4]aryl acetate as the ionophore. Anal Chim Acta 204:223–231

    Article  CAS  Google Scholar 

  20. Yamamoto H, Shinkai S (1994) Molecular design of Calix[4]arene-based sodium-selective electrodes which show remarkably high 105.0–105.3 sodium/potassium selectivity. Chem Lett 23:1115–1118

    Article  Google Scholar 

  21. Pioda LAR, Stankova V, Simon W (1969) Highly selective potassium ion responsive liquid-membrane electrode. Anal Lett 2:665–674

    Article  CAS  Google Scholar 

  22. Tóth K, Lindner E, Horváth M, Jeney J, Bitter I, Agai B et al (1989) Novel bis-crown-ether derivatives for potassium sensors. Anal Lett 22:1185

    Article  Google Scholar 

  23. Ghauri MS, Thomas JDR (1994) Evaluation of an ammonium ionophore for use in poly(vinyl chloride) membrane ion-selective electrodes: solvent mediator effects. Analyst 119:2323–2326

    Article  CAS  Google Scholar 

  24. Suzuki K, Watanabe K, Matsumoto Y, Kobayashi M, Sato S, Siswanta D et al (1995) Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion sensing component for an ion-selective electrode. Anal Chem 67:324–334

    Article  CAS  Google Scholar 

  25. Schefer U, Ammann D, Pretsch E, Oesch U, Simon W (1986) Neutral carrier based calcium(2+)-selective electrode with detection limit in the sub-nanomolar range. Anal Chem 58:2282–2285

    Article  CAS  Google Scholar 

  26. Ammann D, Güggi M, Pretsch E, Simon W (1975) Improved calcium ion-selective electrode based on a neutral carrier. Anal Lett 8:709–720

    Article  CAS  Google Scholar 

  27. Ren K (1989) A liquid-state copper(II) ion-selective electrode containing a complex of Cu(II) with salicylaniline. Talanta 36:767–771

    Article  CAS  Google Scholar 

  28. Szigeti Z, Bitter I, Toth K, Latkoczy C, Fliegel DJ, Guenter D et al (2005) A novel polymeric membrane electrode for the potentiometric analysis of Cu2+ in drinking water. Anal Chim Acta 532:129–136

    Article  CAS  Google Scholar 

  29. Bakker E (1997) Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Anal Chem 69:1061–1069

    Article  CAS  Google Scholar 

  30. Lindner E, Horvath M, Toth K, Pungor E, Bitter I, Agai B et al (1992) Zinc selective ionophores for potentiometric and optical sensors. Anal Lett 25:453–470

    Article  CAS  Google Scholar 

  31. Szcepaniak W, Oleksy J (1986) Liquid-state mercury(II) ion-selective electrode based on N-(O, O-diisopropylthiophosphoryl)thiobenzamide. Anal Chim Acta 189:237–243

    Article  Google Scholar 

  32. Ceresa A, Bakker E, Hattendorf B, Gunther D, Pretsch E (2001) Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. Anal Chem 73:343–351

    Article  CAS  Google Scholar 

  33. Park SB, Matuszewski W, Meyerhoff ME, Liu YH, Kadish KM (1991) Potentiometric anion selectivities of polymer membranes doped with indium(III)-porphyrins. Electroanalysis 3:909–916

    Article  CAS  Google Scholar 

  34. Badr IHA, Diaz M, Hawthorne MF, Bachas LG (1999) Mercuracarborand “Anti-Crown Ether”-based chloride-sensitive liquid/polymeric membrane electrodes. Anal Chem 71:1371–1377

    Article  CAS  Google Scholar 

  35. Xiao KP, Bühlmann P, Nishizawa S, Amemiya S, Umezawa Y (1997) A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore. Anal Chem 69:1038–1044

    Article  CAS  Google Scholar 

  36. Malon A, Radu A, Qin W, Qin Y, Ceresa A, Maj-Zurawska M et al (2003) Improving the detection limit of anion-selective electrodes: an iodide electrode with a nanomolar detection limit. Anal Chem 75:3865–3871

    Article  CAS  Google Scholar 

  37. Hutchins RS, Molina P, Alajarin M, Vidal A, Bachas LG (1994) Use of a guanidinium ionophore in a hydrogen sulfite-selective electrode. Anal Chem 66:3188–3192

    Article  CAS  Google Scholar 

  38. Choi YS, Lvova L, Shin JH, Oh SH, Lee CS, Kim BH et al (2002) Determination of oceanic carbon dioxide using a carbonate-selective electrode. Anal Chem 74:2435–2440

    Article  CAS  Google Scholar 

  39. Brown DV, Chaniotakis NA, Lee IH, Ma SC, Park SB, Meyerhoff ME et al (1989) Mn(III)—porphyrin-based thiocyanate-selective membrane electrodes: characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis 1:477–484

    Article  CAS  Google Scholar 

  40. Stepanek R, Krautler B, Schulthess P, Lindemann B, Ammann D, Simon W (1986) Aquocyanocobalt(III)-hepta(2-phenylethyl)-cobyrinate as a cationic carrier for nitrite-selective liquid-membrane electrodes. Anal Chim Acta 182:83–90

    Article  CAS  Google Scholar 

  41. Li J-Z, Pang X-Y, Yu R-Q (1994) Substituted cobalt phthalocyanine complexes as carriers for nitrite-sensitive electrodes. Anal Chim Acta 297:437–442

    Article  CAS  Google Scholar 

  42. Wojciechowski K, Wroblewski W, Brzozka Z (2003) Anion buffering in the internal electrolyte resulting in extended durability of phosphate-selective electrodes. Anal Chem 75:3270–3273

    Article  CAS  Google Scholar 

  43. Li J-Z, Pang X-Y, Gao D, Yu R-Q (1995) Salicylate-selective electrode based on lipophilic tin(IV)phthalocyanine. Talanta 42:1775–1781

    Article  CAS  Google Scholar 

  44. Zirino A, De Marco R, Rivera I, Pejcic B (2002) The influence of diffusion fluxes on the detection limit of the jalpaite copper ion-selective electrode. Electroanalysis 14:493–498

    Article  CAS  Google Scholar 

  45. Marzouk SAM, Ufer S, Buck RP, Johnson TA, Dunlap LA, Cascio WE (1998) Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal Chem 70:5054–5061

    Article  CAS  Google Scholar 

  46. Pungor E, Toth K (1973) Precipitate-based ISEs. Pure Appl Chem 34:105–138

    Article  CAS  Google Scholar 

  47. Frant MS, Ross JW (1966) Electrode for sensing fluoride ion activity in solution. Science 154:1553–1555

    Article  CAS  Google Scholar 

  48. Bühlmann P, Yajima S, Tohda K, Umezawa K, Nishizawa S, Umezawa Y (1995) Studies on the phase boundaries and the significance of ionic sites of liquid membrane ion-selective electrodes. Electroanalysis 7:811–816

    Article  Google Scholar 

  49. Maj-Zurawska M, Sokalski T, Hulanicki A (1988) Interpretation of the selectivity and detection limit of liquid ion-exchanger electrodes. Talanta 35:281–286

    Article  CAS  Google Scholar 

  50. Mi Y, Bakker E (1999) Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes. Anal Chem 71:5279–5287

    Article  CAS  Google Scholar 

  51. Buhlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores applied in potentiometric and optical sensors. Chem Rev 98:1593–1687

    Article  Google Scholar 

  52. Eugster R, Gehrig PM, Morf WE, Spichiger UE, Simon W (1991) Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Anal Chem 63:2285–2289

    Article  CAS  Google Scholar 

  53. Guilbault GG, Durst RA, Frant MS, Freiser H, Hansen EH, Light TS et al (1976) Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem 48:127–132

    Google Scholar 

  54. Ceresa A, Pretsch E (1999) Determination of formal complex formation constants of various Pb2+ ionophores in the sensor membrane phase. Anal Chim Acta 395:41–52

    Article  CAS  Google Scholar 

  55. Schaller U, Bakker E, Spichiger UE, Pretsch E (1994) Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal Chem 66:391–398

    Article  CAS  Google Scholar 

  56. Amemiya S, Bühlmann P, Umezawa Y (1998) A phase boundary potential model for apparently “Twice-Nernstian” responses of liquid membrane ion-selective electrodes. Anal Chem 70:445–454

    Article  CAS  Google Scholar 

  57. Meier PC, Morf WE, Läubli M, Simon W (1984) Evaluation of the optimum composition of neutral-carrier membrane electrodes with incorporated cation-exchanger sites. Anal Chim Acta 156:1–8

    Article  CAS  Google Scholar 

  58. Ion AC, Bakker E, Pretsch E (2001) Potentiometric Cd2+-selective electrode with a detection limit in the low ppt range. Anal Chim Acta 440:71–79

    Article  CAS  Google Scholar 

  59. Chumbimuni-Torres K, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Solid contact potentiometric sensors for trace level measurements. Anal Chem 78:1318–1322

    Article  CAS  Google Scholar 

  60. Bakker E, Pretsch E (2007) Modern potentiometry. Angew Chem Int Ed 46:2–11

    Article  Google Scholar 

  61. Bakker E (2014) Enhancing ion-selective polymeric membrane electrodes by instrumental control. Trends Anal Chem 53:98–105

    Article  CAS  Google Scholar 

  62. Ghahraman Afshar M, Crespo GA, Bakker E (2012) Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode. Anal Chem 84:8813–8821

    Article  CAS  Google Scholar 

  63. Crespo GA, Ghahraman Afshar M, Bakker E (2012) Direct detection of acidity, alkalinity, and pH with membrane electrodes. Anal Chem 84:10165–10169

    Article  CAS  Google Scholar 

  64. Kim Y, Rodgers PJ, Ishimatsu R, Amemiya S (2009) Subnanomolar ion detection by stripping voltammetry with solid-supported thin polymeric membrane. Anal Chem 81:7262–7270

    Article  CAS  Google Scholar 

  65. Yoshizumi A, Uehara A, Kasuno M, Kitatsuhi Y, Yoshida Z, Kihara S (2005) Rapid and coulometric electrolysis for ion transfer at the aqueous|organic solution interface. J Electroanal Chem 581:275–283

    Article  CAS  Google Scholar 

  66. Grygolowicz-Pawlak E, Bakker E (2010) Thin layer coulometry with ionophore based ion-selective membranes. Anal Chem 82:4537–4542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bakker, E. (2014). Potentiometric Sensors. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_9

Download citation

Publish with us

Policies and ethics