Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

  • 3001 Accesses

Abstract

Water, as the universal solvent on the surface of our planet, is a key matrix to understand and manage environmental phenomena, e.g., pollutant dynamics, geochemical processes or climate studies. Moreover, an adequate supply of good-quality water is a strategic resource for human development and well-being. In this context, accurate and representative analytical information about chemical composition of water is essential for correct assessment, interpretation and solving of environmental problems. Whereas standardized, lab -based analytical methodologies are still dominant in water analysis, chemical sensors and particularly electrochemical sensors are growing as advantageous alternatives to develop simplified and miniaturized analytical tools applicable for flexible, decentralized measurements capable of providing improved spatial and temporal data resolution that is essential in environmental monitoring. In this chapter, we discuss the fundamental aspects of environmental water chemistry and how this chemistry is linked to relevant chemical substances most often analyzed in the context of environmental studies, with special attention to pollutants. Then, the use of sensors for water analysis, with special focus on electrochemical sensors, is treated. We discuss successful examples of the application of electroanalytical sensing approaches to water component determination and speciation, including relevant inorganic, organometallic and organic substances. Finally, we briefly outline future potentials of electrochemical sensors applied to water analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manahan SE (2010) Environmental chemistry, 9th edn. CRC, Boca Raton, FL

    Google Scholar 

  2. Gong SL, Barrie L, Lazare M (2002) Canadian aerosol module (CAM): a size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets. J Geophys Res 107:AAC13-1–AAC13-14

    Google Scholar 

  3. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110:1–12

    Article  Google Scholar 

  4. Canadell JG, Le Quéré C, Raupach MR et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  CAS  Google Scholar 

  5. Nowack B, VanBriesen JM (eds) (2005) Biogeochemistry of chelating agents. American Chemical Society, Washington, DC

    Google Scholar 

  6. van Leeuwen HP, Town RM, Buffle J, Cleven RFMJ, Davison W, Puy J, Van Riemsdijk WH, Sigg L (2005) Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol 39:8545–8556

    Article  Google Scholar 

  7. Buffle J, Tercier-Waeber ML (2000) In situ voltammetry: concepts and practice for trace analysis and speciation. In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems. Chemical analysis and speciation. IUPAC series on analytical and physical chemistry of environmental systems, vol 6. Wiley, Chichester, pp 279–405

    Google Scholar 

  8. van Leeuwen HP, Cleven RFMJ, Buffle J (1989) Voltammetric techniques for complexation measurements in natural aquatic media. Role of the size of macromolecular ligands and dissociation kinetics of complexes. Pure Appl Chem 61:255–274

    Google Scholar 

  9. EEA (2012) European waters—current status and future challenges. European Environment Agency, Copenhagen

    Google Scholar 

  10. EA (2008) Abandoned mines and the water environment, Science report from the Environment Agency. Environment Agency, Bristol

    Google Scholar 

  11. Olías M, Cerón JC, Moral F, Ruiz F (2006) Water quality of the Guadiamar River after the Aznalcóllar spill (SW Spain). Chemosphere 62:213–225

    Article  Google Scholar 

  12. László F (2006) Lessons learned from the cyanide and heavy metal accidental water pollution in the Tisa river basin in the year 2000. In: Durga G, Kambourova V, Simenoova F (eds) Management of intentional and accidental water pollution. NATO security through science series C: environmental security. Springer, Heidelberg, pp 43–50

    Chapter  Google Scholar 

  13. Rico M, Benito G, Díez-Herrero A (2008) Floods from tailings dam failures. J Hazard Mater 154:79–87

    Article  CAS  Google Scholar 

  14. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  Google Scholar 

  15. Michalak AM, Anderson EJ, Beletsky D et al (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci U S A 110:6448–6452

    Article  CAS  Google Scholar 

  16. Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013) Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J Environ Radioact 118:96–104

    Article  CAS  Google Scholar 

  17. Hou X, Povinec PP, Zhang L et al (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ Sci Tech 47:3091–3098

    CAS  Google Scholar 

  18. WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO Press, Geneva, Switzerland

    Google Scholar 

  19. EPA (2009) National primary drinking water regulations. http://water.epa.gov/drink/contaminants/index.cfm#List. Accessed 4 May 2013

  20. Díaz-Cruz MS, García-Galán MJ, Guerra P et al (2009) Analysis of selected emerging contaminants in sewage sludge. Trends Anal Chem 28:1263–1275

    Article  Google Scholar 

  21. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  CAS  Google Scholar 

  22. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  23. Delay M, Frimmel F (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592

    Article  CAS  Google Scholar 

  24. Artiola JF (2004) Monitoring surface waters. In: Artiola JF, Pepper IL, Brusseau ML (eds) Environmental monitoring and characterization. Elsevier, Amsterdam

    Google Scholar 

  25. WFD-CIS (2003) Guidance document 7. Monitoring under the Water Framework Directive. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  26. Krupa SV (2002) Sampling and physico-chemical analysis of precipitation: a review. Environ Pollut 120:565–594

    CAS  Google Scholar 

  27. Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. Trends Anal Chem 8:1291–1307

    Article  Google Scholar 

  28. Esteve-Turrilas FA, Pastor A, Yusá V, de la Guardia M (2007) Using semipermeable membrane devices as passive samplers. Trends Anal Chem 26:703–712

    Article  Google Scholar 

  29. Zabiegala B, Kot-Wasik A, Urbanowicz M, Namiesnik J (2010) Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem 396:273–296

    Article  CAS  Google Scholar 

  30. Allan IJ, Knutsson J, Guigues N, Mills GA, Fouillac AM, Greenwood R (2008) Chemcatcher®and DGT passive sampling devices for regulatory monitoring of trace metals in surface water. J Environ Monit 10:821–829

    Article  CAS  Google Scholar 

  31. Besse JP, Geffard O, Coquery M (2012) Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. Trends Anal Chem 36:113–127

    Article  CAS  Google Scholar 

  32. Artiola JF, Pepper IL, Brusseau ML (2004) Monitoring and characterization of the environment. In: Artiola JF, Pepper IL, Brusseau ML (eds) Environmental monitoring and characterization. Elsevier, Amsterdam

    Google Scholar 

  33. Gaillardet J, Viers J, Dupré B (2004) Trace elements in river waters. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 225–272

    Google Scholar 

  34. Rose S, Shea JA (2007) Environmental geochemistry of trace metal pollution in urban watersheds. In: Sarkar D, Datta R, Hanningan R (eds) Developments in environmental science, vol 5. Elsevier, Amsterdam, Chapter 6

    Google Scholar 

  35. Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T (2012) Conducting polymers in environmental analysis. Trends Anal Chem 39:163–179

    Article  CAS  Google Scholar 

  36. Ricci M, Kourtchev I, Emons H (2012) Chemical water monitoring under the Water Framework Directive with certified reference materials. Trends Anal Chem 36:47–57

    Article  CAS  Google Scholar 

  37. Ademollo N, Patrolecco L, Polesello S, Valsecchi S, Wollgast J, Mariani G, Hanke G (2012) The analytical problem of measuring total concentrations of organic pollutants in whole water. Trends Anal Chem 36:71–81

    Article  CAS  Google Scholar 

  38. Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40:744–752

    Article  CAS  Google Scholar 

  39. Zhou F, Guo H, Liu Y, Jiang Y (2007) Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong. Mar Pollut Bull 54:745–756

    Article  CAS  Google Scholar 

  40. Zhang Y, Guo F, Meng W, Wang XQ (2009) Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ Monit Assess 152:105–121

    Article  CAS  Google Scholar 

  41. Zhao L, Chen Z, Lee K (2011) Modelling the dispersion of wastewater discharges from offshore outfalls: a review. Environ Rev 19:107–120

    Article  Google Scholar 

  42. Trojanowicz M (2011) Recent developments in electrochemical flow detections—a review: Part II. Liquid chromatography. Anal Chim Acta 688:8–35

    Article  CAS  Google Scholar 

  43. Kubán P, Hauser PC (2009) Fundamentals of electrochemical detection techniques for CE and MCE. Electrophoresis 30:3305–3314

    Article  Google Scholar 

  44. Solínová V, Kasicka V (2006) Recent applications of conductivity detection in capillary and chip electrophoresis. J Sep Sci 29:1743–1762

    Article  Google Scholar 

  45. Trojanowicz M (2009) Recent developments in electrochemical flow detections—a review: Part I. Flow analysis and capillary electrophoresis. Anal Chim Acta 653:36–58

    Article  CAS  Google Scholar 

  46. Mai TD, Pham TTT, Pham HV, Saíz J, Ruiz CG, Hauser PC (2013) Portable capillary electrophoresis instrument with automated injection and contactless conductivity detection. Anal Chem 85:2333–2339

    Article  CAS  Google Scholar 

  47. Hnaien M, Lagarde F, Bausells L, Errachid A, Jaffrezic-Renault N (2011) A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal Bioanal Chem 400:1083–1092

    Article  CAS  Google Scholar 

  48. Liu S, Zheng Z, Li X (2013) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405:63–90

    Article  CAS  Google Scholar 

  49. Lagarde F, Jaffrezic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400:947–964

    Article  CAS  Google Scholar 

  50. de Marco R, Clarke G, Pejcic B (2007) Ion-selective potentiometry in environmental analysis. Electroanalysis 19:1987–2001

    Article  Google Scholar 

  51. Zuliani C, Diamond D (2012) Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim Acta 84:29–34

    Article  CAS  Google Scholar 

  52. Chumbimuni-Torres KY, Calvo-Marzal P, Wang J, Bakker E (2008) Electrochemical simple matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes. Anal Chem 80:6114–6118

    Article  CAS  Google Scholar 

  53. Anastasova S, Radu A, Matzeu G, Zuliani C, Mattinen U, Bobacka J, Diamond D (2012) Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection. Electrochim Acta 73:93–97

    Article  CAS  Google Scholar 

  54. Jang A, Zou Z, Lee KK, Ahn CH, Bishop PL (2011) State-of-the-art lab chip sensors for environmental water monitoring. Meas Sci Technol 22:1–18

    Article  Google Scholar 

  55. Martz TR, Connery JG, Johnson KS (2010) Testing the Honeywell Durafet® for seawater pH applications. Limnol Oceanogr Methods 8:172–184

    Article  CAS  Google Scholar 

  56. Rérolle VMC, Floquet CFA, Mowlem MC et al (2012) Seawater-pH measurements for ocean-acidification observations. Trends Anal Chem 40:146–157

    Article  Google Scholar 

  57. Farré M, Kantiani L, Pérez S, Barceló D (2009) Sensors and biosensors in support of EU directives. Trends Anal Chem 28:170–185

    Article  Google Scholar 

  58. Alves GMS, Magalhaes JMCS, Salaün P, van den Berg C (2011) Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal Chim Acta 703:1–7

    Article  CAS  Google Scholar 

  59. Cukrov N, Cmuk P, Mlakar M, Omanovic D (2008) Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification. Chemosphere 72:1559–1566

    Article  CAS  Google Scholar 

  60. Jakuba RW, Moffet JW, Saito MA (2008) Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Anal Chim Acta 614:143–152

    Article  CAS  Google Scholar 

  61. dos Santos LBO, Masini JC (2008) Square wave adsorptive cathodic stripping voltammetry automated by sequential injection analysis: potentialities and limitations exemplified by the determination of methyl parathion in water samples. Anal Chim Acta 606:209–216

    Article  Google Scholar 

  62. Sigg L, Black F, Buffle J et al (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Tech 40:1934–1941

    Article  CAS  Google Scholar 

  63. Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631:129–141

    Article  CAS  Google Scholar 

  64. Mota AM, Pinheiro JP, Simões Gonçalves ML (2012) Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. J Phys Chem A 116:6433–6442

    Article  CAS  Google Scholar 

  65. van Leeuwen HP, Town RM (2005) Kinetic Limitations in Measuring Stabilities of Metal Complexes by Competitive Ligand Exchange-Adsorptive Stripping Voltammetry (CLE-AdSV). Environ Sci Technol 39:7217–7255

    Article  Google Scholar 

  66. Galcerán J, Companys E, Puy J, Cecilia J, Garces JL (2004) AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem 566:95–109

    Article  Google Scholar 

  67. Town RM, van Leeuwen HP (2004) Depletive stripping chronopotentiometry: a major step forward in electrochemical stripping techniques for metal ion speciation analysis. Electroanalysis 16:458–471

    Article  CAS  Google Scholar 

  68. Town RM (2008) Metal binding by heterogeneous ligands: kinetic master curves from SSCP waves. Environ Sci Technol 42:4014–4021

    Article  CAS  Google Scholar 

  69. Serrano N, Diaz-Cruz JM, Ariño C, Esteban M (2007) Stripping chronopotentiometry in environmental analysis. Electroanalysis 19:2039–2049

    Article  CAS  Google Scholar 

  70. Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6:657–664

    Article  CAS  Google Scholar 

  71. Buffle J, Tercier-Waeber ML (2005) Voltammetric environmental trace metal analysis and speciation: from laboratory to in situ measurements. Trends Anal Chem 24:172–191

    Article  CAS  Google Scholar 

  72. Baldo MA, Daniele SD, Ciani I, Bragatto C, Wang J (2003) Remote stripping analysis of lead and copper by a mercury-coated platinum microelectrode. Electroanalysis 16:360–366

    Article  Google Scholar 

  73. Tercier-Waeber ML, Taillefert M (2008) Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. J Environ Monit 10:30–54

    Article  CAS  Google Scholar 

  74. Namour P, Lepot M, Jaffrezic-Renault N (2010) Recent trends in monitoring of european water framework directive priority substances using micro-sensors: a 2007–2009 review. Sensors 10:7947–7978

    Article  Google Scholar 

  75. Li M, Li YT, Li DW, Long YT (2012) Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta 734:31–44

    Article  CAS  Google Scholar 

  76. Malzahn K, Windmiller JR, Valdés-Ramírez G, Schöning MJ, Wang J (2011) Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 136:2912–2917

    Article  CAS  Google Scholar 

  77. Windmiller JR, Wang J (2013) Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25:29–46

    Article  CAS  Google Scholar 

  78. Suryanarayanan V, Wu CT, Ho KC (2010) Molecularly imprinted electrochemical sensors. Electroanalysis 22:1795–1811

    Article  CAS  Google Scholar 

  79. Nittel S (2009) A survey of geosensor networks: advances in dynamic environmental monitoring. Sensors 9:5664–5678

    Article  Google Scholar 

  80. Graveline N, Maton L, Lückge H, Rouillard J, Strosser P, Palkaniete K, Rinaudo JD, Taverne D, Interwies E (2010) An operational perspective on potential uses and constraints of emerging tools for monitoring water quality. Trends Anal Chem 29:378–384

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Pinilla Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gil, E.P. (2014). Water. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_3

Download citation

Publish with us

Policies and ethics