Skip to main content

Remote Sensing

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Remote sensing is the ability to acquire information about an object or phenomenon without physically contacting the object or place from which this information is obtained. Remote sensing is a fast-developing field, which makes it possible to monitor secluded or inaccessible areas. Sensing can be passive, where energy is collected or active whereby energy is emitted by the sensor and perturbs the sensing environment.

Remote electrochemical sensing has many advantages since the electrochemical sensors can be made relatively small and cheap and, nevertheless, are highly sensitive and in many cases possess also high selectivity and robustness. Transduction of the electrochemical response into an electrical signal that can be transmitted over long distances is inherently part of the electrochemical sensor. The major challenges in remote electrochemical systems are sampling and delivery of the sample to the detector. This usually requires introducing a flow system.

Flow systems not only enable the automation of the measurement and ensure relatively easy data collection, but also simplify the entire process in comparison with a static process, which contains various stages of liquid replacements and mixing. Electrochemical methods are known for their high sensitivity, thus enabling the measurement of very low concentration employing small volumes. These make coupling between electrochemical measurements and flow systems ideal for remote sensing.

This chapter describes the concepts of remote sensing in general and remote electrochemical sensing in particular. We review the different approaches and studies dealing with remote electrochemical sensing including voltammetry, potentiometry and other techniques. Conclusions of the advantages and disadvantages of remote electrochemical sensing are discussed and perspectives of this type of sensing are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tercier ML, Buffle J, Graziottin F (1998) Novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. Electroanalysis 10:355–363

    Article  CAS  Google Scholar 

  2. Zagatto EAG, Carneiro JMT, Vicente S, Fortes PR, Santos JLM, Lima J (2009) Mixing chambers in flow analysis: a review. J Anal Chem 64:524–532

    Article  CAS  Google Scholar 

  3. Johnson DC, Weber SG, Bond AM, Wightman RM, Shoup RE, Krull IS (1986) Electroanalytical voltammetry in flowing solutions. Anal Chim Acta 180:187–250

    Article  CAS  Google Scholar 

  4. Volikakis GJ, Efstathiou CE (2000) Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes. Talanta 51:775–785

    Article  CAS  Google Scholar 

  5. Volikakis GJ, Efstathiou CE (2005) Fast screening of total flavonols in wines, tea-infusions and tomato juice by flow injection/adsorptive stripping voltammetry. Anal Chim Acta 551:124–131

    Article  CAS  Google Scholar 

  6. Lenehan CE, Barnett NW, Lewis SW (2002) Sequential injection analysis. Analyst 127:997–1020

    Article  CAS  Google Scholar 

  7. Ivaska A, Kubiak WW (1997) Application of sequential injection analysis to anodic stripping voltammetry. Talanta 44:713–723

    Article  CAS  Google Scholar 

  8. Ruzicka J, Gubeli T (1991) Principles of stopped-flow sequential injection-analysis and its application to the kinetic determination of traces of a proteolytic-enzyme. Anal Chem 63:1680–1685

    Article  CAS  Google Scholar 

  9. Soucaze Guillous B, Kutner W (1997) Flow characteristics of a versatile wall-jet or radial-flow thin-layer large-volume cell for electrochemical detection in flow-through analytical systems. Electroanalysis 9:32–39

    Article  CAS  Google Scholar 

  10. Karyakin AA, Karyakina EE, Gorton L (1996) Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta 43:1597–1606

    Article  CAS  Google Scholar 

  11. BASi (2013) http://www.basinc.com/

  12. Morgan DM, Weber SG (1984) Noise and signal-to-noise ratio in electrochemical detectors. Anal Chem 56:2560–2567

    Article  CAS  Google Scholar 

  13. Stulik K, Pacakova V (1986) Some aspects of design, performance and applications of electrochemical detectors in HPLC and FIA. Ann Chim 76:315–332

    CAS  Google Scholar 

  14. Ryan MD, Bowden EF, Chambers JQ (1994) Dynamic electrochemistry—methodology and application. Anal Chem 66:R360–R427

    Article  Google Scholar 

  15. Danhel A, Shiu KK, Yosypchuk B, Barek J, Peckova K, Vyskocil V (2009) The use of silver solid amalgam working electrode for determination of nitrophenols by HPLC with electrochemical detection. Electroanalysis 21:303–308

    Article  CAS  Google Scholar 

  16. Davey DE, Mulcahy DE, Oconnell GR (1993) comparison of detector cell configurations in flow-injection potentiometry. Electroanalysis 5:581–588

    Article  CAS  Google Scholar 

  17. Patthy M, Gyenge R, Salat J (1982) comparison of the design and performance-characteristics of the wall-jet type and thin-layer type electrochemical detectors—separation of catecholamines and phenothiazines. J Chromatogr 241:131–139

    Article  CAS  Google Scholar 

  18. Hanekamp HB, Dejong HG (1982) Theoretical comparison of the performance of electrochemical flow-through detectors. Anal Chim Acta 135:351–354

    Article  CAS  Google Scholar 

  19. Yamada J, Matsuda H (1973) Limiting diffusion currents in hydrodynamic voltammetry. 3. Wall jet electrodes. J Electroanal Chem 44:189–198

    Article  CAS  Google Scholar 

  20. Stojanovic RS, Bond AM, Butler ECV (1992) A comparative-study of the cylindrical wire, thin-layer, and wall-jet detector cells for the determination of inorganic arsenic by ion exclusion chromatography with constant and pulsed amperometric detection. Electroanalysis 4:453–461

    Article  CAS  Google Scholar 

  21. Maixnerova L, Barek J, Peckova K (2012) Thin-layer and wall-jet arrangement of amperometric detector with boron-doped diamond electrode: comparison of amperometric determination of aminobiphenyls in HPLC-ED. Electroanalysis 24:649–658

    Article  CAS  Google Scholar 

  22. Maccarthy P, Klusman RW, Cowling SW, Rice JA (1993) water analysis. Anal Chem 65:R244–R292

    Article  Google Scholar 

  23. Sole S, Alegret S (2001) Environmental toxicity monitoring using electrochemical biosensing systems. Environ Sci Poll Res 8:256–264

    Article  CAS  Google Scholar 

  24. Rundel PW, Graham EA, Allen MF, Fisher JC, Harmon TC (2009) Environmental sensor networks in ecological research. New Phytol 182:589–607

    Article  Google Scholar 

  25. Lourino-Cabana B, Iftekhar S, Billon G, Mikkelsen O, Ouddane B (2010) Automatic trace metal monitoring station use for early warning and short term events in polluted rivers: application to streams loaded by mining tailing. J Environ Monit 12:1898–1906

    Article  CAS  Google Scholar 

  26. Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6:657–664

    Article  CAS  Google Scholar 

  27. Nimick DA, Gammons CH, Cleasby TE, Madison JP, Skaar D, Brick CM (2003) Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes. Water Resourc Res 39. doi:10.1029/2002WR001571

    Google Scholar 

  28. McKnight D, Bencala KE (1988) Diel variations in iron chemistry in an acidic stream in the Colorado Rocky-Mountains, USA. Arctic Alpine Res 20:492–500

    Article  Google Scholar 

  29. Lourino-Cabana B, Billon G, Magnier A, Prygiel E, Baeyens W, Prygiel J et al (2011) Evidence of highly dynamic geochemical behaviour of zinc in the Deule river (northern France). J Environ Monit 13:2124–2133

    Article  CAS  Google Scholar 

  30. Saulnier I, Mucci A (2000) Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Appl Geochem 15:191–210

    Article  CAS  Google Scholar 

  31. Van den Berg GA, Meijers GGA, Van der Heijdt LM, Zwolsman JJG (2001) Dredging-related mobilisation of trace metals: a case study in the Netherlands. Water Res 35:1979–1986

    Article  Google Scholar 

  32. Inano S, Yamazaki H, Yoshikawa S (2004) The history of heavy metal pollution during the last 100 years, recorded in sediment cores from Osaka castle moat, southwestern Japan. Quaternary Res (Tokyo) 43:275–286

    Article  Google Scholar 

  33. Watanabe T, Ohe T, Hirayama T (2005) Occurrence and origin of mutagenicity in soil and water environment. Environ Sci 12:325–346

    CAS  Google Scholar 

  34. EPA (2013) http://www.epa.gov/lawsregs/

  35. Diamond D, Lau KT, Brady S, Cleary J (2008) Integration of analytical measurements and wireless communications—current issues and future strategies. Talanta 75:606–612

    Article  CAS  Google Scholar 

  36. LaGier MJ, Fell JW, Goodwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54:757–770

    Article  CAS  Google Scholar 

  37. DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246

    Article  CAS  Google Scholar 

  38. Mikkelsen O, Strasunskiene K, Skogvold S, Schroder KH, Johnsen CC, Rydningen M et al (2007) Automatic voltammetric system for continuous trace metal monitoring in various environmental samples. Electroanalysis 19:2085–2092

    Article  CAS  Google Scholar 

  39. Miro M, Jimoh M, Frenzel W (2005) A novel dynamic approach for automatic microsampling and continuous monitoring of metal ion release from soils exploiting a dedicated flow-through microdialyser. Anal Bioanal Chem 382:396–404

    Article  CAS  Google Scholar 

  40. Tercier-Waeber ML, Confalonieri F, Riccardi G, Sina A, Noel S, Buffle J et al (2005) Multi physical-chemical profiler for real-time in situ monitoring of trace metal speciation and master variables: development, validation and field applications. Mar Chem 97:216–235

    Article  CAS  Google Scholar 

  41. Superville P-J, Louis Y, Billon G, Prygiel J, Omanovic D, Pizeta I (2011) An adaptable automatic trace metal monitoring system for on line measuring in natural waters. Talanta 87:85–92

    Article  CAS  Google Scholar 

  42. Jang A, Zou Z, Lee KK, Ahn CH, Bishop PL (2011) State-of-the-art lab chip sensors for environmental water monitoring. Meas Sci Technol 22:032001

    Article  Google Scholar 

  43. Rajar R, Zagar D, Cetina M, Akagi H, Yano S, Tomiyasu T et al (2004) Application of three-dimensional mercury cycling model to coastal seas. Ecol Model 171:139–155

    Article  CAS  Google Scholar 

  44. Rajar R, Zagar D, Sirca A, Horvat M (2000) Three-dimensional modelling of mercury cycling in the Gulf of Trieste. Sci Tot Environ 260:109–123

    Article  CAS  Google Scholar 

  45. Pastorello GZ, Sanchez-Azofeifa GA, Nascimento MA (2011) Enviro-Net: from networks of ground-based sensor systems to a web platform for sensor data management. Sensors 11:6454–6479

    Article  Google Scholar 

  46. Porter J, Arzberger P, Braun HW, Bryant P, Gage S, Hansen T et al (2005) Wireless sensor networks for ecology. Bioscience 55:561–572

    Article  Google Scholar 

  47. SOSI http://www.soundocean.com/home

  48. Mead MI, Popoola OAM, Stewart GB, Landshoff P, Calleja M, Hayes M et al (2013) The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos Environ 70:186–203

    Article  CAS  Google Scholar 

  49. Coloso JJ, Cole JJ, Hanson PC, Pace ML (2008) Depth-integrated, continuous estimates of metabolism in a clear-water lake. Can J Fish Aquat Sci 65:712–722

    Article  Google Scholar 

  50. Le Goff T, Braven J, Ebdon L, Scholefield D (2003) Automatic continuous river monitoring of nitrate using a novel ion-selective electrode. J Environ Monit 5:353–358

    Article  Google Scholar 

  51. Scholefield D, Le Goff T, Braven J, Ebdon L, Long T, Butler M (2005) Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Sci Tot Environ 344:201–210

    Article  CAS  Google Scholar 

  52. Noyhouzer T, Mandler D (2013) A new electrochemical flow cell for the remote sensing of heavy metals. Electroanalysis 25:109–115

    Article  CAS  Google Scholar 

  53. Zirino A, Lieberman SH, Clavell C (1978) measurement of Cu and Zn in San Diego bay by automated anodic-stripping voltammetry. Environ Sci Technol 12:73–79

    Article  CAS  Google Scholar 

  54. Mills G, Fones G (2012) A review of in situ methods and sensors for monitoring the marine environment. Sensor Rev 32:17–28

    Article  Google Scholar 

  55. Wadhams P, Wilkinson JP, McPhail SD (2006) A new view of the underside of Arctic sea ice. Geophys Res Lett 33, L04501

    Article  Google Scholar 

  56. Bogue R (2011) Robots for monitoring the environment. Ind Robot 38:560–566

    Article  Google Scholar 

  57. Stix G (1994) ROBOTUNA. Sci Am 270:142–142

    Article  Google Scholar 

  58. Stokey R, Allen B, Austin T, Goldsborough R, Forrester N, Purcell M et al (2001) Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J Ocean Eng 26:487–497

    Article  Google Scholar 

  59. Collar PG, McPhail SD (1995) Autosub—an autonomous unmanned submersible for ocean data-collection. Electron Commun Eng J 7:105–114

    Article  Google Scholar 

  60. Dickey TD, Bidigare RR (2005) Interdisciplinary oceanographic observations: the wave of the future. Sci Mar 69:23–42

    Article  Google Scholar 

  61. Montgomery JL, Harmon T, Kaiser W, Sanderson A, Haas CN, Hooper R et al (2007) The WATERS network: an integrated environmental observatory network for water research. Environ Sci Technol 41:6642–6647

    Article  CAS  Google Scholar 

  62. Wegehenkel M, Kersebaum KC (2005) The validation of a modeling system for calculating water balance and catchment discharge using simple techniques based on field data and remote sensing data. Phys Chem Earth 30:171–179

    Article  Google Scholar 

  63. Williams SB, Pizarro OR, Jakuba MV, Johnson CR, Barrett NS, Babcock RC et al (2012) Monitoring of benthic reference sites using an autonomous underwater vehicle. IEEE Robot Automat Mag 19:73–84

    Article  Google Scholar 

  64. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. Mar Technol Soc J 38:73–84

    Article  Google Scholar 

  65. CISRO (2013) http://www.csiro.au/

  66. Musameh MM, Gao Y, Hickey M, Kyratzis IL (2012) Application of carbon nanotubes in the extraction and electrochemical detection of organophosphate pesticides: a review. Anal Lett 45:783–803

    Article  CAS  Google Scholar 

  67. Florence TM (1982) The speciation of trace-elements in waters. Talanta 29:345–364

    Article  CAS  Google Scholar 

  68. Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423

    Article  CAS  Google Scholar 

  69. Tercier ML, Buffle J, Zirino A, Devitre RR (1990) In situ voltammetric measurement of trace-elements in lakes and oceans. Anal Chim Acta 237:429–437

    Article  CAS  Google Scholar 

  70. Wang J (2000) In situ electrochemical monitoring: from remote sensors to submersible microlaboratories. Lab Robot Automat 12:178–182

    Article  CAS  Google Scholar 

  71. Wang J, Foster N, Armalis S, Larson D, Zirino A, Olsen K (1995) Remote stripping electrode for in-situ monitoring of labile copper in the marine-environment. Anal Chim Acta 310:223–231

    Article  CAS  Google Scholar 

  72. Wang J, Tian BM, Wang JY (1998) Electrochemical flow sensor for in-situ monitoring of total metal concentrations. Anal Commun 35:241–243

    Article  CAS  Google Scholar 

  73. Wang J, Wang JY, Lu JM, Tian BM, MacDonald D, Olsen K (1999) Flow probe for in situ electrochemical monitoring of trace chromium. Analyst 124:349–352

    Article  CAS  Google Scholar 

  74. Wang J, Cepria G, Chen Q (1996) Submersible bioprobe for continuous monitoring of peroxide species. Electroanalysis 8:124–127

    Article  CAS  Google Scholar 

  75. Wang J, Chen Q, Cepria G (1996) Electrocatalytic modified electrode for remote monitoring of hydrazines. Talanta 43:1387–1391

    Article  CAS  Google Scholar 

  76. Wang J, Chen QA (1995) Remote electrochemical biosensor for field monitoring of phenolic-compounds. Anal Chim Acta 312:39–44

    Article  CAS  Google Scholar 

  77. Wang J, Tian BM, Wang JY, Lu JM, Olsen C, Yarnitzky C et al (1999) Stripping analysis into the 21st century: faster, smaller, cheaper, simpler and better. Anal Chim Acta 385:429–435

    Article  CAS  Google Scholar 

  78. Braungardt CB, Achterberg EP, Axelsson B, Buffle J, Graziottin F, Howell KA et al (2009) Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems. Mar Chem 114:47–55

    Article  CAS  Google Scholar 

  79. Tercier-Waeber ML, Buffle J, Confalonieri F, Riccardi G, Sina A, Graziottin F et al (1999) Submersible voltammetric probes for in situ real-time trace element measurements in surface water, groundwater and sediment-water interface. Meas Sci Technol 10:1202–1213

    Article  CAS  Google Scholar 

  80. Chapin TP, Nimick DA, Gammons CH, Wanty RB (2007) Diel cycling of zinc in a stream impacted by acid rock drainage: initial results from a new in situ Zn analyzer. Environ Monit Assess 133:161–167

    Article  CAS  Google Scholar 

  81. Freitas G, Gleizer G, Lizarralde F, Hsu L, Salvi dos Reis NR (2010) Kinematic reconfigurability control for an environmental mobile robot operating in the Amazon Rain Forest. J Field Robot 27:197–216

    Google Scholar 

  82. Noyhouzer T, Mandler D (2011) Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode. Anal Chim Acta 684:1–7

    Article  CAS  Google Scholar 

  83. Fink L, Mandler D (2010) Thin functionalized films on cylindrical microelectrodes for electrochemical determination of Hg(II). J Electroanal Chem 649:153–158

    Article  CAS  Google Scholar 

  84. SHOAL (2012) http://www.roboshoal.com/

  85. Flow System Network (2013) http://float.berkeley.edu/

  86. Geotraces (2013) http://www.geotraces.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mandler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noyhouzer, T., Mandler, D. (2014). Remote Sensing. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_23

Download citation

Publish with us

Policies and ethics