Skip to main content

Electronic Noses

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Artificial olfaction systems stem from the idea that arrays of nonselective gas sensors can mimic the natural olfaction to identify and recognize odors. Electronic noses have been investigated for almost three decades using many different sensor technologies, and the odor identification has been demonstrated in several application fields. In this chapter a review of the main features of electronic noses is given. The discussion is mainly focused on the analogies with natural olfaction and how the current sensor technologies and data processing can be tailored to replicate some of the properties of the natural sense. Finally, examples of applications of electronic noses are given with particular emphasis to food analysis, medical diagnosis, and environmental control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  Google Scholar 

  2. Korsching S (2002) Olfactory maps and odor images. Curr Opin Neurobiol 12:387–392

    Article  CAS  Google Scholar 

  3. Moncrieff R (1961) An instrument for measuring and classifying odours. J Appl Physiol 16(1):742–749

    CAS  Google Scholar 

  4. Wilkens WF, Hatman AD (1964) An electronic analogue for the olfactory process. Ann NY Acad Sci 116:608–620

    Article  CAS  Google Scholar 

  5. Imai T, Suzuki M, Sakano H (2006) Odorant receptor derived cAMP signals direct axonal targeting. Science 314:657–661

    Article  CAS  Google Scholar 

  6. Sicard G, Holley A (1984) Receptor cell responses to odorants: similarities and differences among odorants. Brain Res 292:283–296

    Article  CAS  Google Scholar 

  7. Hallem E, Ho M, Carlson J (2004) The molecular basis of odor coding in the drosophila antenna. Cell 117:965–979

    Article  CAS  Google Scholar 

  8. Malnic B, Hirono J, Sato T, Buck L (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  Google Scholar 

  9. Persaud K, Dodds G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355

    Article  CAS  Google Scholar 

  10. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  Google Scholar 

  11. Fraden J (2004) Handbook of modern sensors. AIP Press, New York, NY

    Google Scholar 

  12. D’Amico A, Di Natale C (2001) A contribution on some basic definitions of sensors properties. IEEE Sens J 1:183–190

    Article  Google Scholar 

  13. Gardner J, Bartlett P, Pratt K (1995) Modelling of gas-sensitive conducting polymer devices. IEE Proc Circ Dev Syst 142:321–333

    Article  Google Scholar 

  14. Barsan N, Koziej D, Weimar U (2007) Metal oxide based gas sensor research: how to? Sens Actuat B 121:18–35

    Article  CAS  Google Scholar 

  15. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    Article  CAS  Google Scholar 

  16. Heilig A, Bârsan N, Weimar U, Schweizer-Berberich M, Gardner JW, Göpel W (1997) Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens Actuat B 43:45–51

    Article  CAS  Google Scholar 

  17. Martinelli E, Polese D, Catini A, D’Amico A, Di Natale C (2012) Self-adapted temperature modulation in metal-oxide semiconductor gas sensors. Sens Actuat B 161:534–541

    Article  CAS  Google Scholar 

  18. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi one dimensionale metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mat Sci 54:1–67

    Article  CAS  Google Scholar 

  19. Dutta R, Kashwan K, Bhuyan M, Hines E, Gardner J (2003) Electronic nose based tea quality standardization. Neural Netw 16:847–853

    Article  Google Scholar 

  20. El Barbri N, Mirhisse J, Ionescu R, El Bari N, Correig X, Bouchikhi B, Llobet E (2009) An electronic nose system based on a micromachined gas sensor array to assess the freshness of sardines. Sens Actuat B 141:538–543

    Article  Google Scholar 

  21. Falasconi M, Gobbi E, Pardo M, Della Torre M, Bresciani A, Sberveglieri G (2005) Detection of toxigenic strains of Fusarium verticilloides in corn by electronic olfactory system. Sens Actuat B 108:250–257

    Article  CAS  Google Scholar 

  22. Heeger AJ (2001) Semiconducting and metallic polymers (Nobel lecture). Angew Chemie Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  23. Persaud K (2005) Polymers for chemical sensing. Mater Today 8:38–44

    Article  CAS  Google Scholar 

  24. Gonzalez-Martin A, Lewis B, Raducanu M, Kim J (2010) An array based sensor for seafood freshness assessment. Bull Korean Chem Soc 31:3084

    Article  CAS  Google Scholar 

  25. Bastos A, Magan N (2006) Potential of an electronic nose for the early detection and differentiation between streptomyces in potable water. Sens Actuat B Chem 116:151–155

    Article  Google Scholar 

  26. Guadarrama A, Rodriguez-Mendez M, Sanz C, Rios J, de Saja J (2001) Electronic nose based on conducting polymers for the quality control of the olive oil aroma. Anal Chim Acta 432:283–292

    Article  CAS  Google Scholar 

  27. Lonergan M, Severin E, Doleman B, Beaber S, Grubbs R, Lewis N (1996) Array-based vapor sensing using chemically sensitive carbon black-polymer resistor. Chem Mater 8:2298–2312

    Article  CAS  Google Scholar 

  28. Dragonieri S, Schot R, Mertens B, Cessie S, Gauw S, Spanevello A, Resta O, Willard N, Vink T, Rabe K, Bel E, Sterk P (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    Article  Google Scholar 

  29. Hattesohl AD, Jörres RA, Dressel H, Schmid S, Vogelmeier C, Greulich T, Noeske S, Bals R, Koczulla AR (2011) Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology 16:1258–1264

    Article  Google Scholar 

  30. Ballantine D, White R, Martin S, Ricco A, Frye G, Wohltien H, Zellers E (1997) Acoustic wave sensors. Academic, San Diego, CA

    Google Scholar 

  31. Di Natale C, Brunink J, Bungaro F, Davide F, D’Amico A, Paolesse R, Boschi T, Faccio M, Ferri G (1996) Recognition of fish storage time by a metalloporphyrins-coated QMB sensor array. Meas Sci Technol 7:1103–1114

    Article  Google Scholar 

  32. Santonico M, Pittia P, Pennazza G, Martinelli E, Bernabei M, Paolesse R, D’Amico A, Compagnone D, Di Natale C (2008) Study of the aroma of artificially flavoured custards by chemical sensor array fingerprinting. Sens Actuat B 133:345–351

    Article  CAS  Google Scholar 

  33. Eifler J, Martinelli E, Santonico M, Capuano R, Schild D, Di Natale C (2011) Differential detection of potentially hazardous Fusarium Species in wheat grains by an electronic nose. PLoS One 6:e21026

    Article  CAS  Google Scholar 

  34. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi A, D’Amico A (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Bios Bioelectron 18:1209–1218

    Article  Google Scholar 

  35. Montuschi P, Santonico M, Mondino C, Penazza G, Mantini G, Martinelli E, Capuano R, Ciabattoni G, Paolesse R, Di Natale C, Barnes P, D’Amico A (2010) Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest 137:790–796

    Article  CAS  Google Scholar 

  36. Gan H, Che Man Y, Tan C, Norami I, Nazimah S (2005) Characterization of vegetable oils by surface acoustic wave sensing electronic nose. Food Chem 89:507–518

    Article  CAS  Google Scholar 

  37. Yoo Y, Chae M, Kang J, Kim T, Hwang K, Lee J (2012) Multifunctionalized cantilever systems for electronic nose applications. Anal Chem 84:8240–8245

    Article  CAS  Google Scholar 

  38. Lundstrom I, Shivaram S, Svensson C, Lundkvist L (1975) A hydrogen sensitive MOS field effect transistor. Appl Phys Lett 26:55–57

    Article  CAS  Google Scholar 

  39. Eklov T, Johannson G, Winquist F, Lundstrom I (1998) Monitoring sausage fermentation using an electronic nose. J Sci Food Agric 76:525–532

    Article  CAS  Google Scholar 

  40. Bachinger T, Riese U, Eriksson R, Mandenius C (2002) Gas sensor arrays for early detection of infection in mammalian cell culture. Bios Bioelectron 17:395–403

    Article  CAS  Google Scholar 

  41. Winquist F, Spetz A, Armgarth M, Nylander C, Lundstrom I (1983) Modified palladium metal-oxide semiconductor structure with increased ammonia gas sensitivity. Appl Phys Lett 43:839–841

    Article  CAS  Google Scholar 

  42. Takulapalli B, Laws G, Liddell P, Andreasson J, Erno Z, Gust D, Thornton T (2008) Electrical detection of amine ligation to a metalloporphyrin via a hybrid SOI-MOSFET. J Am Chem Soc 130:2226–2233

    Article  CAS  Google Scholar 

  43. Di Natale C, Buchholt K, Martinelli E, Paolesse R, Pomarico G, D’Amico A, Lundström I, Lloyd Spetz A (2009) Investigation of quartz microbalance and ChemFET transduction of molecular recognition events in a metalloporphyrin film. Sens Actuators B 135:560–567

    Article  Google Scholar 

  44. Gauglitz G (2006) Optical sensing looks to new field. Trends Anal Chem 25:748–750

    Article  CAS  Google Scholar 

  45. Rakow N, Suslick K (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  46. Filippini D, Svensson S, Lundström I (2003) Computer screen as a programmable light source for visible absorption characterization of (bio)chemical assays. Chem Commun 9:240–241

    Article  Google Scholar 

  47. Filippini D, Alimelli A, Di Natale C, Paolesse R, D’Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew Chem Int Ed 45:3800–3803

    Article  CAS  Google Scholar 

  48. Gatto E, Malik MA, Di Natale C, Paolesse R, D’Amico A, Lundström I, Filippini D (2008) Polychromatic fingerprinting of excitation emission matrices. Chem Eur J 14:6057–6060

    Article  CAS  Google Scholar 

  49. Malik MA, Gatto E, Macken S, DiNatale C, Paolesse R, D’Amico A, Lundström I, Filippini D (2009) Imaging fingerprinting of excitation emission matrices. Anal Chim Acta 635:196–201

    Article  CAS  Google Scholar 

  50. Alimelli A, Pennazza G, Santonico M, Paolesse R, Filippini D, D’Amico A, Lundström I, Di Natale C (2006) Fish freshness detection by a computer screen photoassisted based gas sensor array. Anal Chim Acta 582:320–328

    Article  Google Scholar 

  51. Dickinson T, Michael K, Kauer J, Walt D (1999) Convergent self encoded bead sensor arrays in the design of an artificial nose. Anal Chem 71:2192–2198

    Article  CAS  Google Scholar 

  52. Di Natale C, Santonico M, Paolesse R, Filippini D, D’Amico A, Lundstrom I (2010) Evaluation of the performance of sensors based on optical imaging of a chemically sensitive layer. Anal Bioanal Chem 397:613–621

    Article  Google Scholar 

  53. Di Natale C, Martinelli E, Paolesse R, D’Amico A, Filippini D, Lundström I (2008) An experimental biomimetic platform for artificial olfaction. PLoS One 3:e3139

    Article  Google Scholar 

  54. Martinelli E, Polese D, Dini F, Paolesse R, Filippini D, Lundström I, Di Natale C (2011) An investigation on the role of spike latency in an artificial olfactory system. Front Neuroeng 4:16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Di Natale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Natale, C. (2014). Electronic Noses. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_22

Download citation

Publish with us

Policies and ethics