Skip to main content

Other Types of Sensors: Impedance-Based Sensors, FET Sensors, Acoustic Sensors

  • Chapter
  • First Online:
Environmental Analysis by Electrochemical Sensors and Biosensors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, types of electrochemical sensor or biosensor which are based on electrical properties and which cannot be grouped into normal voltammetric or potentiometric sensors are addressed, giving the fundamental principles and selected examples to show how they are implemented for characterisation and for analysis. This will concern sensors based on impedance, solid-state miniaturised sensors and piezoelectric transducer-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brett CMA, Oliveira-Brett AM (1993) Electrochemistry. Principles, methods and applications (chapter 11). Oxford University Press, Oxford, UK

    Google Scholar 

  2. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken, NJ

    Book  Google Scholar 

  3. Brett CMA, Oliveira-Brett AM (2011) Electrochemical sensing in solution – origins, applications and future perspectives. J Solid State Electrochem 15:1487–1494

    Article  CAS  Google Scholar 

  4. Gouveia-Caridade C, Soares DM, Liess H-D, Brett CMA (2008) Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors. Appl Surf Sci 254:6380–6389

    Article  CAS  Google Scholar 

  5. Brett CMA (2008) Electrochemical impedance spectroscopy for characterization of electrochemical sensors and biosensors. ECS Trans 13(13):67–80

    Article  CAS  Google Scholar 

  6. Brett CMA, Kresak S, Hianik T, Oliveira-Brett AM (2003) Studies on self-assembled alkanethiol monolayers formed at applied potential on polycrystalline gold electrodes. Electroanalysis 15:557–565

    Article  CAS  Google Scholar 

  7. Oliveira Brett AM, da Silva LA, Brett CMA (2002) Adsorption of guanine, guanosine and adenine at electrodes studied by differential pulse voltammetry and electrochemical impedance. Langmuir 18:2326–2330

    Article  CAS  Google Scholar 

  8. Gouveia-Caridade C, Brett CMA (2008) Strategies, development and applications of polymer-modified electrodes for stripping analysis. Curr Anal Chem 4:206–214

    Article  CAS  Google Scholar 

  9. Pauliukaite R, Ghica ME, Barsan M, Brett CMA (2007) Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors. J Solid State Electrochem 11:899–908

    Article  CAS  Google Scholar 

  10. Gouveia-Caridade C, Brett CMA (2005) Electrochemical impedance characterisation of Nafion-coated carbon film resistor electrodes for electroanalysis. Electroanalysis 17:549–555

    Article  CAS  Google Scholar 

  11. Gouveia-Caridade C, Brett CMA (2006) The influence of Triton-X-100 surfactant on the electroanalysis of lead and cadmium at carbon film electrodes – an electrochemical impedance study. J Electroanal Chem 592:113–120

    Article  CAS  Google Scholar 

  12. Gouveia-Caridade C, Pauliukaite R, Brett CMA (2006) Influence of Nafion coatings and surfactant on the stripping voltammetry of heavy metals at bismuth-film modified carbon film electrodes. Electroanalysis 18:854–861

    Article  CAS  Google Scholar 

  13. Cesarino I, Cavalheiro ETG, Brett CMA (2011) Simultaneous determination of cadmium, lead, copper and mercury ions using organofunctionalised SBA-15 nanostructured silica modified graphite–polyurethane composite electrode. Electroanalysis 22:61–68

    Article  Google Scholar 

  14. Semaan FS, Cavalheiro ETG, Brett CMA (2009) Electrochemical behaviour of verapamil at graphite-polyurethane composite electrodes. Determination of release profiles in pharmaceutical samples. Anal Lett 42:1119–1135

    Article  CAS  Google Scholar 

  15. Fernandes DM, Ghica ME, Cavaleiro AMV, Brett CMA (2011) Electrochemical impedance study of self-assembled layer-by-layer iron-silicotungstate/poly(ethylenimine) modified electrodes. Electrochim Acta 56:7940–7945

    Article  CAS  Google Scholar 

  16. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239–6247

    Article  CAS  Google Scholar 

  17. Zhai C, Sun X, Zhao WP, Gong ZL, Wang XY (2013) Acetylcholinesterase biosensor based on chitosan/Prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosens Bioelectron 42:124–130

    Article  CAS  Google Scholar 

  18. Rather JA, De Wael K (2012) C-60-functionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater. Sensor Actuator B 171:907–915

    Article  Google Scholar 

  19. Ghica ME, Carvalho RC, Amine A, Brett CMA (2013) Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt or copper hexacyanoferrate. Sensor Actuator B 178:270–278

    Article  CAS  Google Scholar 

  20. Radu A, Anastasova-Ivanova S, Paczosa-Bator B, Danielewski M, Bobacka J, Lewenstam A, Diamond D (2010) Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal Methods 2:1490–1498

    Article  CAS  Google Scholar 

  21. Stergiou DV, Veltsistas PG, Prodromidis MI (2008) An electrochemical study of lignin films degradation: proof-of-concept for an impedimetric ozone sensor. Sensor Actuator B 129:903–908

    Article  CAS  Google Scholar 

  22. Herzog G, Moujahid W, Twomey K, Lyons C, Ogurtsov VI (2013) On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116:26–32

    Article  CAS  Google Scholar 

  23. Prodromidis MI (2010) Impedimetric immunosensors – a review. Electrochim Acta 55:4227–4233

    Article  CAS  Google Scholar 

  24. Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12:3449–3471

    Article  Google Scholar 

  25. Jaffrezic-Renault N, Dzyadevych NV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8:2569–2588

    Article  Google Scholar 

  26. Bergveld P, Sibbald A (1988) Analytical and biomedical applications of ion-selective field-effect transistors. Elsevier, Amsterdam

    Google Scholar 

  27. Hafeman DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–1185

    Article  CAS  Google Scholar 

  28. Schöning MJ, Luth H (2001) Novel concepts for silicon-based biosensors. Phys Status Solidi A 185:65–77

    Article  Google Scholar 

  29. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME 17:70–71

    Article  CAS  Google Scholar 

  30. Vlasov YG, Tarantov YA, Bobrov PV (2003) Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors - a critical review. Anal Bioanal Chem 376:788–796

    Article  CAS  Google Scholar 

  31. Janata J, Josowicz M (2009) Organic semiconductors in potentiometric gas sensors. J Solid State Electrochem 13:41–49

    Article  CAS  Google Scholar 

  32. Shinwari MW, Deen MJ, Landheer D (2007) Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron Reliab 47:2025–2057

    Article  Google Scholar 

  33. Jimenez-Jorquera C, Orozco J, Baldi A (2010) ISFET based microsensors for environmental monitoring. Sensors 10:61–83

    Article  CAS  Google Scholar 

  34. Janata J, Huber RJ, Cohen R, Kolesar ES (1981) Chemically sensitive field-effect transistor to detect organophosphorous compounds and pesticides. Aviat Space Environ Med 52:666–671

    Google Scholar 

  35. Artigas J, Beltran A, Jimenez C, Baldi A, Mas R, Dominguez C, Alonso J (2001) Application of ion sensitive field effect transistor based sensors to soil analysis. Comput Electron Agric 31:281–293

    Article  Google Scholar 

  36. Birrell SJ, Hummel JW (2001) Real-time multi ISFET/FIA soil analysis system with automatic sample extraction. Comput Electron Agric 32:45–67

    Article  Google Scholar 

  37. Matsuura K, Asano Y, Yamada A, Narus K (2013) Detection of Micrococcus Luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor. Sensors 13:2484–2493

    Article  CAS  Google Scholar 

  38. Barbaro A, Colapicchioni C, Davini E, Mazzamurro G, Piotto A, Porcelli F (1992) CHEMFET devices for biomedical and environmental applications. Adv Mater 4:402–408

    Article  Google Scholar 

  39. Dzyadevych SV, Soldatkin AP, Korpan YI, Arkhypova VN, Elskaya AV, Chovelon JM, Martelet C, Jaffrezic-Renault N ((2003) Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal Bioanal Chem 377:496–506

    Google Scholar 

  40. Men H, Zou SF, Li Y, Wang YP, Ye XS, Wang P (2005) A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection. Sensor Actuator B 110:350–355

    Article  CAS  Google Scholar 

  41. Turek M, Ketterer L, Claßen M, Berndt HK, Elbers G, Krüger P, Keusgen M, Schöning MJ (2007) Development and electrochemical investigations of an EIS-(electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors 7:1415–1426

    Article  CAS  Google Scholar 

  42. Schoning MJ, Arzdorf M, Mulchandani P, Chen W, Mulchandani A (2003) Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: fundamental studies and aspects of development. Sensors 3:119–127

    Article  Google Scholar 

  43. Katz HE (2004) Chemically sensitive field-effect transistors and chemiresistors: new materials and device structures. Electroanalysis 16:1837–1842

    Article  CAS  Google Scholar 

  44. Lieberzeit PA, Dickert FL (2007) Sensor technology and its application in environmental analysis. Anal Bioanal Chem 387:237–247

    Article  CAS  Google Scholar 

  45. Sarkar T, Gao Y, Mulchandani A (2013) Carbon nanotubes-based label-free affinity sensors for environmental monitoring. Appl Biochem Biotechnol 170:1011–1025

    Article  CAS  Google Scholar 

  46. Rigoni F, Tognolini S, Borghetti P, Drera G, Pagliara S, Goldoni A, Sangaletti L (2013) Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst 138:7392–7399

    Article  CAS  Google Scholar 

  47. Huang H, Gross DE, Yang X, Moore JS, Zang L (2013) One-step surface doping of organic nanofibers to achieve high dark conductivity and chemiresistor sensing of amines. ACS Appl Mater Interfaces 5:7704–7708

    Article  CAS  Google Scholar 

  48. Srinives S, Sarkar T, Mulchandani A (2013) Nanothin polyaniline film for highly sensitive chemiresistive gas sensing. Electroanalysis 25:1439–1445

    Article  CAS  Google Scholar 

  49. Selvakumar S, Somanathan N, Reddy KA (2013) Chemiresistor sensors based on conducting polymers for hypergolic propellants and acidic vapors of rocket exhaust plumes – a review. Prop Explos Pyrotech 38:176–189

    Article  CAS  Google Scholar 

  50. Dobrokhotov V, Larin A, Sowell D (2013) Vapor trace recognition using a single nonspecific chemiresistor. Sensors 13:9016–9028

    Article  CAS  Google Scholar 

  51. Arnau A (ed) (2008) Piezoelectric transducers and applications, 2nd edn. Springer, Heidelberg

    Google Scholar 

  52. Sauerbrey G (1959) Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z Phys 155:206–212

    Article  CAS  Google Scholar 

  53. Reed CE, Kanazawa KK, Kaufmann JH (1990) Physical description of a viscoelastically loaded AT-cut quartz resonator. J Appl Phys 68:1993–2001

    Article  CAS  Google Scholar 

  54. Minunni M, Mascini M, Guibault GG, Hock B (1995) The quartz-crystal microbalance as biosensor – a status-report on its future. Anal Lett 28:749–764

    Article  CAS  Google Scholar 

  55. Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V, Ozturk ZZ (2010) Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sensor Actuator B 150:346–354

    Article  CAS  Google Scholar 

  56. Jin YL, Huang YY, Liu GQ, Zhao R (2013) Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions. Analyst 138:5479–5485

    Article  CAS  Google Scholar 

  57. Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D‘Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210

    Article  CAS  Google Scholar 

  58. Jia K, Adam PM, Ionescu RE (2013) Sequential acoustic detection of atrazine herbicide and carbofuran insecticide using a single micro-structured gold quartz crystal micro balance. Sensor Actuator B 188:400–404

    Article  CAS  Google Scholar 

  59. Funari R, Della Ventura B, Schiavo L, Esposito R, Altucci C, Velotta R (2013) Detection of parathion pesticide by quartz crystal microbalance functionalized with UV-activated antibodies. Anal Chem 85:6392–6397

    Article  CAS  Google Scholar 

  60. Hillman AR (2011) The EQCM: electrogravimetry with a light touch. J Solid State Electrochem 15:1647–1660

    Article  CAS  Google Scholar 

  61. Perrot H, Calvo E, Brett CMA (2008) Modified piezoelectric surfaces. In: Arnau A (ed) Piezoelectric transducers and applications, 2nd edn. Springer, Heidelberg, Chapter 11

    Google Scholar 

  62. Inzelt G (2011) Rise and rise of conducting polymers. J Solid State Electrochem 15:1711–1718

    Article  CAS  Google Scholar 

  63. Pinto EM, Barsan MM, Brett CMA (2010) Mechanism of formation and construction of self-assembled myoglobin/hyaluronic acid multilayer films – an electrochemical QCM, impedance and AFM study. J Phys Chem B 114:15354–15361

    Article  CAS  Google Scholar 

  64. Bunsow J, Enzenberg A, Pohl K, Schuhmann W, Johannsmann D (2010) Electrochemically induced formation of surface-attached temperature-responsive hydrogels. amperometric glucose sensors with tunable sensor characteristics. Electroanalysis 22:978–984

    Article  Google Scholar 

  65. Gay-Martin M, Diez-Arevalo E, Rodriguez-Mendez ML, Saez JAD (2013) Electrochemical quartz crystal microbalance analysis of the oxidation reaction of phenols found in wines at lutetium bisphthalocyanine electrodes. Sensor Actuator B 185:24–31

    Article  CAS  Google Scholar 

  66. Noworyta K, Kutner W, Wijesinghe CA, Srour SG, D‘Souza F (2012) Nicotine, cotinine, and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors. Anal Chem 84:2154–2163

    Article  CAS  Google Scholar 

  67. Ballantine DA, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1997) Acoustic wave sensors: theory, design and physicochemical applications. Academic, San Diego, USA

    Google Scholar 

  68. Vivancos JL, Racz Z, Cole M, Gardner JW (2012) Surface acoustic wave based analytical system for the detection of liquid detergents. Sensor Actuator B 171:469–477

    Article  Google Scholar 

  69. Wang P-H, Yu J-H, Li Z-J, Ding Z-J, Guo L, Du B (2013) Synthesis and evaluation of a new phthalocyanine as sensor material for sarin detection. Sensor Actuator B 188:1306–1311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brett, C. (2014). Other Types of Sensors: Impedance-Based Sensors, FET Sensors, Acoustic Sensors. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_14

Download citation

Publish with us

Policies and ethics