Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Electrochemical immunosensors combine high sensitivity of electrochemical methods and simple and miniature construction of the required instrumentation, with excellent specificity of antibodies as recognition elements. The current status of this approach applied for environmental analysis is discussed. The various types of biosensors were generally found very suitable for environmental analysis, and the subgroup of immunosensors provided numerous attractive applications in this field, too. This chapter introduces the principles, effectiveness and limitations of immunosensors for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

Antibody

Ag:

Antigen

ALP:

Alkaline phosphatase

Amp:

Amperometry

Cap:

Capacitance

CE:

Capillary electrophoresis

Comp:

Competitive assay

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

GCE:

Glassy carbon electrode

GOPS:

Glycidoxypropyltrimethoxysilane

Homo:

Homogeneous assay

HRP:

Horse radish peroxidase

IDE:

Interdigitated array electrode

ITO:

Indium tin oxide electrode

MWCNT:

Multiwalled carbon nanotube

NP:

Nanoparticle

P-homo:

Pseudohomogeneous assay

Poten:

Potentiometric

QD:

Quantum dot

SAM:

Self-assembled monolayer

Sandw:

Sandwich assay

SPE:

Screen-printed electrode

SWSV:

Square wave stripping voltammetry

SWV:

Square wave voltammetry

References

  1. Rodriguez-Mozaz S, Marco MP, Lopez de Alda MJ, Barcelo D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76:723–752

    Article  CAS  Google Scholar 

  2. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  CAS  Google Scholar 

  3. Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19:2015–2028

    Article  CAS  Google Scholar 

  4. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chrom 1152:97–115

    Article  CAS  Google Scholar 

  5. Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184:1648–1649

    Article  CAS  Google Scholar 

  6. Skládal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9:737–745

    Article  Google Scholar 

  7. Killard AJ, Deasy B, O’Kennedy R, Smyth MR (1996) Antibodies: production, functions and applications in biosensors. Trends Anal Chem 14:257–266

    Google Scholar 

  8. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego, CA

    Google Scholar 

  9. Ramírez NB, Salgado AM, Valdman B (2009) The evolution and developments of immunosensors for health and environmental monitoring: problems and perspectives. Braz J Chem Eng 26:227–249

    Article  Google Scholar 

  10. Skládal P, Kaláb T (1995) A multichannel immunosensor for 2,4-dichlorophenoxyacetic acid. Anal Chim Acta 316:73–78

    Article  Google Scholar 

  11. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37:789–830

    Article  CAS  Google Scholar 

  12. Tran LD, Nguyen DT, Nguyen BH, Do QP, Nguyen HL (2011) Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: application for human papilloma virus. Talanta 85:1560–1565

    Article  CAS  Google Scholar 

  13. Upadhyayula Venkata KK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18

    Article  CAS  Google Scholar 

  14. Bagel O, Degrand C, Limoges B, Joannes M, Azek F, Brossier P (2000) Enzyme affinity assays involving a single-use electrochemical sensor. Electroanalysis 14:1447–1452

    Article  Google Scholar 

  15. Tang TC, Deng A, Huang HJ (2002) Immunoassay with a microtiter plate incorporated multichannel electrochemical detection system. Anal Chem 74:2617–2621

    Article  CAS  Google Scholar 

  16. Zeravik J, Skládal P (1999) Screen-printed amperometric immunosensor for repeated use in the flow-through mode. Electroanalysis 11:851–856

    Article  CAS  Google Scholar 

  17. Tankiewicz M, Fenik J, Biziuk M (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. Trends Anal Chem 29:1050–1063

    Article  CAS  Google Scholar 

  18. Liu S, Zheng Z, Li X (2013) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405:63–90

    Article  CAS  Google Scholar 

  19. Deng AP, Yang H (2007) A multichannel electrochemical detector coupled with an ELISA microtiter plate for the immunoassay of 2,4-dichlorophenoxyacetic acid. Sensor Actuator B Chem 124:202–208

    Article  CAS  Google Scholar 

  20. Navrátilová I, Skládal P (2004) The immunosensors for measurement of 2,4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62:11–18

    Article  Google Scholar 

  21. Zhang L, Wang M, Wang C, Hu X, Wang G (2012) Label-free impedimetric immunosensor for sensitive detection of 2,4-dichlorophenoxybutyric acid (2,4-DB) in soybean. Talanta 101:226–232

    Article  CAS  Google Scholar 

  22. Valera E, Azcon JR, Rodriguez A, Castanera LM, Sanchez FJ, Marco MP (2007) Impedimetric immunosensor for atrazine detection using interdigitated μ-electrodes (IDμE's). Sensor Actuator B 125:526–537

    Article  CAS  Google Scholar 

  23. Plekhanova YV, Reshetilov AN, Yazynina EV, Zherdev AV, Dzantiev BB (2003) A new assay format for electrochemical immunosensors: polyelectrolyte-based separation on membrane carriers combined with detection of peroxidase activity by pH-sensitive field-effect transistor. Biosens Bioelectron 19:109–114

    Article  CAS  Google Scholar 

  24. Ionescu RE, Gondran C, Bouffier L, Jaffrezic-Renault N, Martelet C, Cosnier S (2010) Label-free impedimetric immunosensor for sensitive detection of atrazine. Electrochim Acta 55:6228–6232

    Article  CAS  Google Scholar 

  25. Zacco E, Galve R, Marco MP, Alegret S, Pividori MI (2007) Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms. Biosens Bioelectron 22:1707–1715

    Article  CAS  Google Scholar 

  26. Tran HV, Reisberg S, Piro B, Nguyen TD, Pham MC (2013) Label-free electrochemical immunoaffinity sensor based on impedimetric method for pesticide detection. Electroanalysis 25:664–670

    Article  CAS  Google Scholar 

  27. Pichetsurnthorn P, Vattipalli K, Prasad S (2012) Nanoporous impedemetric biosensor for detection of trace atrazine from water samples. Biosens Bioelectron 32:156–162

    Article  Google Scholar 

  28. Ivanov A, Evtugyn A, Budnikov H, Girotti S, Ghini S, Ferri E, Montoya A, Mercader JV (2008) Amperometric immunoassay of azinphos-methyl in water and honeybees based on indirect competitive ELISA. Anal Lett 41:392–405

    Article  CAS  Google Scholar 

  29. Sun X, Du S, Wang X, Zhao W, Li Q (2011) A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody. Sensors 11:9520–9531

    Article  CAS  Google Scholar 

  30. Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4,4′-thiobisbenzenethiol for determination of carbofuran. Food Control 28:184–191

    Article  CAS  Google Scholar 

  31. Sun X, Du S, Wang X (2012) Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film. Eur Food Res Technol 235:469–477

    Article  CAS  Google Scholar 

  32. Sun Y, Cao Y, Gong Z, Wang X, Zhang Y, Gao J (2012) An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors 12:17247–17261

    Article  CAS  Google Scholar 

  33. Wei W, Zhong XM, Wang X, Yin LH, Pu YP, Liu SQ (2012) A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol-gel film modified screen-printed carbon electrode. Food Chem 135:888–892

    Article  CAS  Google Scholar 

  34. Nangia Y, Bhalla Y, Kumar B, Suri CR (2012) Electrochemical stripping voltammetry of gold ions for development of ultra-sensitive immunoassay for chlorsulfuron. Electrochem Commun 14:51–54

    Article  CAS  Google Scholar 

  35. Dzantiev BB, Yazynina EV, Zherdev AV, Plekhanova YV, Reshetilov AN, Chang SC, McNeil CJ (2004) Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay. Sensor Actuator B 98:254–261

    Article  CAS  Google Scholar 

  36. Dai Z, Liu H, Shen YD, Su XP, Xu ZL, Sun YM, Zou XY (2012) Attomolar determination of coumaphos by electrochemical displacement immunoassay coupled with oligonucleotide sensing. Anal Chem 84:8157–8163

    Article  CAS  Google Scholar 

  37. Bhalla V, Sharma P, Pandey SK, Suri CR (2012) Impedimetric label-free immunodetection of phenylurea class of herbicides. Sensor Actuator B 171:1231–1237

    Article  Google Scholar 

  38. Sharma P, Bhalla V, Tuteia S, Kukar M, Suri CR (2012) Rapid extraction and quantitative detection of the herbicide diuron in surface water by a hapten-functionalized carbon nanotubes based electrochemical analyzer. Analyst 137:2495–2502

    Article  CAS  Google Scholar 

  39. Liu G, Wang S, Liu J, Song D (2012) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84:3921–3928

    Article  CAS  Google Scholar 

  40. Cho YA, Cha GS, Lee YT, Lee HS (2005) A dipstick-type electrochemical immunosensor for the detection of the organophosphorus insecticide fenthion. Food Sci Biotechnol 14:743–746

    CAS  Google Scholar 

  41. Baskeyfield DEH, Davis F, Magan N, Tothill IE (2011) A membrane-based immunosensor for the analysis of the herbicide isoproturon. Anal Chim Acta 699:223–231

    Article  CAS  Google Scholar 

  42. Hu SQ, Xie JW, Xu QH, Rong KT, Shen GL, Yu RQ (2003) A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta 61:769–777

    Article  CAS  Google Scholar 

  43. Zeng GM, Zhang Y, Tang L, Chen LJ, Pang Y, Feng CL, Huang GH, Niu CG (2012) Sensitive and renewable picloram immunosensor based on paramagnetic immobilisation. Int J Environ Anal Chem 92:729–741

    Article  CAS  Google Scholar 

  44. Chen L, Zeng G, Zhang Y, Tang L, Huang D, Liu C, Pang Y, Luo Y (2010) Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Anal Biochem 407:172–179

    Article  CAS  Google Scholar 

  45. Zeravik J, Ruzgas T, Fránek M (2003) A highly sensitive flow-through amperometric immunosensor based on the peroxidase chip and enzyme-channeling principle. Biosens Bioelectron 18:1321–1327

    Article  CAS  Google Scholar 

  46. Liu G, Timchalk C, Lin Y (2006) Bioelectrochemical magnetic immunosensing of trichloropyridinol: a potential insecticide biomarker. Electroanalysis 18:1605–1613

    Article  CAS  Google Scholar 

  47. Rodriguez-Mozaz S, Marco MP, Lopez de Alda MJ, Barceló D (2004) Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal Bioanal Chem 378:588–598

    Article  CAS  Google Scholar 

  48. Yadava SK, Chandrab P, Goyal RN, Shim YB (2013) A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Anal Chim Acta 762:14–24

    Article  Google Scholar 

  49. Piao MH, Noh HB, Rahman MA, Won MS, Shim YB (2008) Label-free detection of bisphenol A using a potentiometric immunosensor. Electroanalysis 20:30–37

    Article  CAS  Google Scholar 

  50. Rahman MA, Shiddiky MJA, Park JS, Shim YB (2007) An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens Bioelectron 11:2464–2470

    Article  Google Scholar 

  51. Wang S, Zhuang H, Du L, Lin S, Wang C (2007) Determination of estradiol by biotin-avidin-amplified electrochemical enzyme immunoassay. Anal Lett 40:887–896

    Article  Google Scholar 

  52. Liu X, Deng DKY (2009) Picogram-detection of estradiol at an electrochemical immunosensor with a gold nanoparticle-protein G-(LC-SPDP)-scaffold. Talanta 77:1437–1443

    Article  CAS  Google Scholar 

  53. Kanso H, Barthelmebs L, Inguimbert N, Noguer T (2013) Immunosensors for estradiol and ethinylestradiol based on new synthetic estrogen derivatives: application to wastewater analysis. Anal Chem 85:2397–2404

    Article  CAS  Google Scholar 

  54. Butler D, Guilbault GG (2006) Disposable amperometric immunosensor for the detection of 17-β-estradiol using screen-printed electrodes. Sensor Actuator B 113:692–699

    Article  CAS  Google Scholar 

  55. Gao H, Lu JY, Cui YR, Zhang XX (2006) Electrochemical immunoassay of estrone at an antibody-modified conducting polymer electrode towards immunobiosensors. J Electroanal Chem 592:88–94

    Article  CAS  Google Scholar 

  56. Martinez NA, Pereira SV, Bertolino FA, Schneider RJ, Messina GA, Raba J (2012) Electrochemical detection of a powerful estrogenic endocrine disruptor: ethinylestradiol in water samples through bioseparation procedure. Anal Chim Acta 723:27–32

    Article  CAS  Google Scholar 

  57. Ahma A, Moore E (2012) Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a pyrene in water. Analyst 137:5839–5844

    Article  Google Scholar 

  58. Wang C, Lin M, Liu Y, Lei H (2011) A dendritic nanosilica-functionalized electrochemical immunosensor with sensitive enhancement for the rapid screening of benzo[a pyrene. Electrochim Acta 56:88–1994

    Google Scholar 

  59. Lin MH, Liu YJ, Yang ZH, Huang YB, Sun ZH, He Y, Ni CL (2012) Construction of sensitive amperometric immunosensor based on poly(amidoamine) dendrimer and one-step ionic-liquid-assisted graphene/chitosan platform for benzo[a pyrene detection. Int J Electrochem Sci 7:965–978

    CAS  Google Scholar 

  60. Lin MH, Liu YJ, Sun ZH, Zhang SL, Yang ZH, Ni CL (2012) Electrochemical immunoassay of benzo[a pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label. Anal Chim Acta 722:100–106

    Article  CAS  Google Scholar 

  61. Stoppacher N, Pittner F, Sontag G (2009) Design of a voltammetric immunosensor for determination of 1-nitropyrene. Monatsh Chem 140:909–914

    Article  CAS  Google Scholar 

  62. Lin YY, Liu GD, Wai CM, Lin YH (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochem Commun 9:1547–1552

    Article  CAS  Google Scholar 

  63. Moore EJ, Kreuzer MP, Pravda M, Guilbault GG (2004) Development of a rapid single-drop analysis biosensor for screening of phenanthrene in water samples. Electroanalysis 16:1653–1659

    Article  CAS  Google Scholar 

  64. Yang P, Zheng QL, Xu H, Liu JS, Jin LT (2012) A highly sensitive electrochemical impedance spectroscopy immunosensor for determination of 1-pyrenebutyric acid based on the bifunctionality of Nafion/gold nanoparticles composite electrode. Chin J Chem 30:1155–1162

    Article  CAS  Google Scholar 

  65. Wei MY, Wen SD, Yang XQ, Guo LH (2009) Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens Bioelectron 24:2909–2914

    Article  CAS  Google Scholar 

  66. Centi S, Laschi S, Mascini M (2007) Improvement of analytical performances of a disposable electrochemical immunosensor by using magnetic beads. Talanta 73:394–399

    Article  CAS  Google Scholar 

  67. Lin YY, Liu GD, Wai CM, Lin YH (2008) Bioelectrochemical immunoassay of polychlorinated biphenyl. Anal Chim Acta 612:23–28

    Article  CAS  Google Scholar 

  68. Nistor C, Emneus J (2003) A capillary-based amperometric flow immunoassay for 2,4,6-trichlorophenol. Anal Bioanal Chem 375:125–132

    CAS  Google Scholar 

  69. Rose A, Nistor C, Emneus J, Pfeiffer D, Wollenberger U (2002) GDH biosensor based off-line capillary immunoassay for alkylphenols and their ethoxylates. Biosens Bioelectron 17:1033–1043

    Article  CAS  Google Scholar 

  70. Evtugyn GA, Eremin SA, Shaljamova RP, Ismagilova AR, Budnikov HC (2006) Amperometric immunosensor for nonylphenol determination based on peroxidase indicating reaction. Biosens Bioelectron 22:56–62

    Article  CAS  Google Scholar 

  71. Singh S, Srivastava A, Oh HM, Ahn CY, Choi GG, Asthana RK (2012) Recent trends in development of biosensors for detection of microcystin. Toxicon 60:878–894

    Article  CAS  Google Scholar 

  72. Zhang B, Hou L, Tang DP, Liu BQ, Li JR, Chen GN (2012) Simultaneous multiplexed stripping voltammetric monitoring of marine toxins in seafood based on distinguishable metal nanocluster-labelled molecular tags. J Agric Food Chem 60:8974–8982

    Article  CAS  Google Scholar 

  73. Zhang XW, Zhang ZX (2012) Development of a capillary electrophoresis-based enzyme immunoassay with electrochemical detection for the determination of okadaic acid and dinophysistoxin2 in shellfish samples. Anal Lett 45:1365–1376

    Article  CAS  Google Scholar 

  74. Campas M, Marty JL (2007) Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosens Bioelectron 22:1034–1040

    Article  CAS  Google Scholar 

  75. Lotierzo M, Abuknesha R, Davis F, Tothill IE (2012) A membrane-based ELISA assay and electrochemical immunosensor for microcystin-lr in water samples. Environ Sci Technol 46:5504–5510

    Article  CAS  Google Scholar 

  76. Chen XQ, He M, Shi HC, Cai Q (2011) An amperometric immunosensor for microcystin-(leucine-arginine) based on screen-printed carbon electrode. Chin J Anal Chem 39:443–448

    CAS  Google Scholar 

  77. Zhang FH, Yang SH, Kang TY, Cha GS, Nam H, Meyerhoff ME (2007) A rapid competitive binding nonseparation electrochemical enzyme immunoassay (NEEIA) test strip for microcystin-LR (MCLR) determination. Biosens Bioelectron 22:1419–1425

    Article  CAS  Google Scholar 

  78. Yu HW, Lee J, Kim S, Nguyen GH, Kim IS (2009) Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR. Anal Bioanal Chem 394:2173–2181

    Article  CAS  Google Scholar 

  79. Han C, Doepke A, Cho W, Likodimos V, de la Cruz AA, Back T, Heineman WR, Halsall HB, Shanov VN, Schulz MJ, Falaras P, Dionysiou DD (2013) A multiwalled-carbon-nanotube-based biosensor for monitoring microcystin-lr in sources of drinking water supplies. Adv Funct Mater 23:1807–1816

    Article  CAS  Google Scholar 

  80. Sun XL, Shi H, Wang HX, Xiao LW, Li LN (2010) A simple, highly sensitive, and label-free impedimetric immunosensor for detection of microcystin-LR in water. Anal Lett 43:533–544

    Article  CAS  Google Scholar 

  81. Tong P, Tang S, He Y, Shao Y, Zhang L, Chen G (2011) Label-free immunosensing of microcystin-LR using a gold electrode modified with gold nanoparticles. Microchim Acta 173:299–305

    Article  CAS  Google Scholar 

  82. Zhao HM, Tian JP, Quan X (2013) A graphene and multienzyme functionalized carbon nanosphere-based electrochemical immunosensor for microcystin-LR detection. Colloids Surf B Biointerfaces 103:38–44

    Article  CAS  Google Scholar 

  83. Wei Q, Zhao YF, Du B, Wu D, Cai YY, Mao KX, Li H, Xu CX (2011) Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv Funct Mat 21:4193–4198

    Article  CAS  Google Scholar 

  84. Sun XL, Guan L, Shi H, Ji J, Zhang YZ, Li ZJ (2013) Determination of microcystin-LR with a glassy carbon impedimetric immunoelectrode modified with an ionic liquid and multiwalled carbon nanotubes. Microchim Acta 180:75–83

    Article  CAS  Google Scholar 

  85. Loyprasert S, Thavarungkul P, Aswatreratanakul P, Wongkittisuka B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78–86

    Article  CAS  Google Scholar 

  86. Li R, Xia Q, Li Z, Sun X, Liu J (2013) Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosens Bioelectron 44:235–240

    Article  Google Scholar 

  87. Hayat A, Barthelmebs L, Sassolas A, Marty JL (2012) Development of a novel label-free amperometric immunosensor for the detection of okadaic acid. Anal Chim Acta 724:92–97

    Article  CAS  Google Scholar 

  88. Hayat A, Barthelmebs L, Marty JL (2012) Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensor Actuator B 171:810–815

    Article  Google Scholar 

  89. Dominguez RB, Hayat A, Sassolas A, Alonso GA, Munoz R, Marty JL (2012) Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 99:232–237

    Article  CAS  Google Scholar 

  90. Eissa S, Zourob M (2012) A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscale 4:7593–7599

    Article  CAS  Google Scholar 

  91. Zhang X, Zhang Z (2012) Capillary electrophoresis-based immunoassay with electrochemical detection as rapid method for determination of saxitoxin and decarbamoylsaxitoxin in shellfish samples. J Food Compos Anal 28:61–69

    Article  Google Scholar 

  92. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9:4147–4152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skládal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skládal, P. (2014). Immunosensors. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_13

Download citation

Publish with us

Policies and ethics