Skip to main content

Pharmacogenetics in the Treatment of Schizophrenia

  • Chapter
  • First Online:

Abstract

The goal of pharmacogenetics/pharmacogenomics research is to obtain genetic information which predicts drug efficacy and adverse effects applicable to individual patients (i.e., personalized medicine). This is of particular importance in the treatment of schizophrenia, a complex and heterogeneous disorder with multiple independent symptom dimensions (e.g., psychosis, cognitive impairment, negative symptoms) and a diversity of treatment options. Genetic markers which predict efficacy for specific types of psychopathology, cognitive impairment, or related behaviors (e.g., suicide) for specific antipsychotic drugs (APDs) would diminish the need for multiple clinical trials to find the best medication. Similarly, genetic biomarkers which identify vulnerability for particular types of adverse reactions (e.g., tardive dyskinesia, weight gain) would be of great value. Such biomarkers may also clarify the mechanism of action of APDs and facilitate new drug discovery and development. Presently, genetic biomarkers which purport to predict therapeutic response or adverse effects to specific APDs are identified. Among these are biomarkers for the enzymes which metabolize psychotropic drugs (e.g., CYP2D6, CYP1A2, CYP3A4/5); biomarkers of APD-related adverse effects (e.g., weight gain or tardive dyskinesia); and biomarkers predictive of APD response (e.g., the DRD2 gene which codes the dopamine (DA) D2 receptor; SULT4A1-1 which is reported to predict response to olanzapine; and SV2C which is reported to predict inadequate response to olanzapine and quetiapine). Their widespread adoption will follow if successful, prospective clinical trials demonstrate improvement in clinical outcome and establish convenient and cost-effective genotyping to deliver guidance to prescriber and patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59.

    Article  CAS  PubMed  Google Scholar 

  2. Bajjalieh SM, Peterson K, Shinghal R, Scheller RH. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science. 1992;257(5074):1271–3.

    Article  CAS  PubMed  Google Scholar 

  3. Bindra PS, Knowles R, Buckley KM. Conservation of the amino acid sequence of SV2, a transmembrane transporter in synaptic vesicles and endocrine cells. Gene. 1993;137(2):299–302.

    Article  CAS  PubMed  Google Scholar 

  4. Tao-Cheng JH. Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience. 2007;150(3):575–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gronborg M, Pavlos NJ, Brunk I, et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci. 2010;30(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  6. Dardou D, Dassesse D, Cuvelier L, Deprez T, De RM, Schiffmann SN. Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system. Brain Res. 2011;1367:130–45.

    Article  CAS  PubMed  Google Scholar 

  7. Dardou D, Monlezun S, Foerch P, et al. A role for Sv2c in basal ganglia functions. Brain Res. 2013;1507:61–73.

    Article  CAS  PubMed  Google Scholar 

  8. Guidotti A, Auta J, Davis JM, et al. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl). 2005;180(2):191–205.

    Article  CAS  Google Scholar 

  9. Ramsey TL, Liu Q, Massey BW, Brennan MD. Genotypic variation in the SV2C gene impacts response to atypical 2 antipsychotics in the CATIE Study. Schizophr Res. 2013;149(1–3):21–5.

    Article  PubMed  Google Scholar 

  10. Mitchell DJ, Minchin RF. Cytosolic Aryl sulfotransferase 4A1 interacts with the peptidyl prolyl cis-trans isomerase Pin1. Mol Pharmacol. 2009;76(2):388–95.

    Article  CAS  PubMed  Google Scholar 

  11. Gamage N, Barnett A, Hempel N, et al. Human sulfotransferases and their role in chemical metabolism. Toxicol Sci. 2006;90:5–22.

    Article  CAS  PubMed  Google Scholar 

  12. Allali-Hassani A, Pan PW, Dombrovski L, et al. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol. 2007;5(5):e97.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Falany CN, Xie X, Wang J, et al. Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain. Biochem J. 2000;346(3):857–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liyou NE, Buller KM, Tresillian MJ, et al. Localization of a brain sulfotransferase, SULT4A1, in the human and rat brain: an immunohistochemical study. J Histochem Cytochem. 2003;51(12):1655–64.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis AG, Minchin RF. Lack of exonic sulfotransferase 4A1 mutations in controls and schizophrenia cases. Psychiatr Genet. 2009;19(1):53–5.

    Article  PubMed  Google Scholar 

  16. Brennan MD, Condra J. Transmission disequilibrium suggests a role for the sulfotransferase-4A1 gene in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2005;139B(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  17. Meltzer HY, Brennan MD, Woodward ND, Jayathilake K. Association of Sult4A1 SNPs with psychopathology and cognition in patients with schizophrenia or schizoaffective disorder. Schizophr Res. 2008;106(2–3):258–64.

    Article  PubMed  Google Scholar 

  18. Ramsey TL, Meltzer HY, Brock GN, Mehrotra B, Jayathilake K, Bobo WV, Brennan MD. Evidence for a SULT4A1 haplotype correlating with baseline psychopathology and atypical antipsychotic response. Pharmacogenomics. 2011;12(4):471–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu Q, Ramsey TL, Meltzer HY, Massey BW, Padmanabhan S, Brennan MD. Sulfotransferase 4A1 haplotype (SULT4A1-1) is associated with decreased hospitalization events in antipsychotic-treated patients with schizophrenia. Prim Care Companion CNS Disord. 2012;14(3):1–6.

    Google Scholar 

  20. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects, and functionary diversity. Pharmacogenomics J. 2005;5:6–13.

    Article  CAS  PubMed  Google Scholar 

  21. de Leon J. Incorporating pharmacogenetics into clinical practice: reality of a new tool in psychiatry. Current issues in clinical implementation. CNS Spectr. 2006;11(3 Suppl 3):8–12.

    PubMed  Google Scholar 

  22. Pramyothin P, Khaodhiar L. Metabolic syndrome with the atypical antipsychotics. Curr Opin Endocrinol Diabetes Obes. 2010;17(5):460–6.

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds GP, Zhang ZJ, Zhang XB. Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet. 2002;359(9323):2086–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sicard MN, Zai CC, Tiwari AK, et al. Polymorphisms of the HTR2C gene and antipsychotic induced weight gain: an update and meta-analysis. Pharmacogenomics. 2010;11(11):1561–71.

    Article  CAS  PubMed  Google Scholar 

  25. Müller DJ, Chowdhury NI, Zai CC. The pharmacogenetics of antipsychotic-induced adverse events. Curr Opin Psychiatry. 2013;26(2):144–50.

    Article  PubMed  Google Scholar 

  26. Malhotra AK, Correll CU, Chowdhury NI, et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry. 2012;69(9):904–12.

    Article  CAS  PubMed  Google Scholar 

  27. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. 2012;17(3):242–66.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang JP, Malhotra AK. Pharmacogenetics of antipsychotics: recent progress and methodological issues. Expert Opin Drug Metab Toxicol. 2013;9(2):183–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Meltzer HY. Treatment-resistant schizophrenia—the role of clozapine. Curr Med Res Opin. 1997;14(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  30. McEvoy JP, Lieberman JA, Stroup TS, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry. 2006;163(4):600–10.

    Article  PubMed  Google Scholar 

  31. Chowdhury NI, Remington G, Kennedy JL. Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep. 2011;13(2):156–65.

    Article  PubMed  Google Scholar 

  32. Lieberman JA, Yunis J, Egea E, Canoso RT, Kane JM, Yunis EJ. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry. 1990;47(10):945–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tiwari AK, Need A, Knight J, et al. Sequencing analysis of exomes of Finnish patients with clozapine-induced agranulocytosis. Mol Psychiatry. 2013;11.

    Google Scholar 

  34. Athanasiou MC, Dettling M, Cascorbi I, et al. Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry. 2011;72(4):458–63.

    Article  CAS  PubMed  Google Scholar 

  35. Waln O, Jankovic J. An update on tardive dyskinesia: from phenomenology to treatment. Tremor Other Hyperkinet Mov. 2013;3. pii: tre-03-161-4138-1.

    Google Scholar 

  36. Kane JM, Woerner M, Lieberman J. Tardive dyskinesia: prevalence, incidence, and risk factors. J Clin Psychopharmacol. 1988;8(4 Suppl):52S–6.

    CAS  PubMed  Google Scholar 

  37. Pena MS, Yaltho TC, Jankovic J. Tardive dyskinesia and other movement disorders secondary to aripiprazole. Mov Disord. 2011;26:147–52.

    Article  PubMed  Google Scholar 

  38. Müller DJ, Schulze TG, Knapp M, et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand. 2001;104(5):375–9.

    Article  PubMed  Google Scholar 

  39. Thelma B, Srivastava V, Tiwari AK. Generic underpinnings of tardive dyskinesia: passing the baton to pharmacogenetics. Pharmacogenomics. 2008;9(9):1285–306.

    Article  CAS  PubMed  Google Scholar 

  40. Müller DJ, Shinkai T, De Luca V, Kennedy JL. Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J. 2004;4(2):77–87.

    Article  PubMed  Google Scholar 

  41. Mackenzie B, Souza RP, Likhodi O, et al. Pharmacogenetics of antipsychotic treatment response and side effects. Therapy. 2010;7(2):191–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lencz T, Malhotra AK. Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin Neurosci. 2009;11(4):405–15.

    PubMed Central  PubMed  Google Scholar 

  43. Zai CC, De Luca V, Hwang RW, et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007;12:794–5.

    Article  CAS  PubMed  Google Scholar 

  44. Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1 A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry. 2008;13:544–56.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry. 1998;155:1207–13.

    CAS  PubMed  Google Scholar 

  46. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005;15:151–8.

    Article  CAS  PubMed  Google Scholar 

  47. Bakker PR, Bakker E, Amin N, van Duijn CM, van Os J, van Harten PN. Candidate gene-based association study of antipsychotic-induced movement disorders in long-stay psychiatric patients: a prospective study. PLoS One. 2012;7(5):e36561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sankar P, Cho MK, Mountain J. Genetic research and health disparities. JAMA. 2004;291:2985–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tang H, Quertermous T, Rodriguez B, et al. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet. 2005;76:268–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wilson JF, Weale ME, Smith AC, et al. Population genetic structure of variable drug response. Nat Genet. 2001;29:265–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Bill W. Massey is Chief Scientific Officer for MyGenesRx and a Shareholder at SureGene and MyGenesRx. He is a previous consultant for Neurotherapeutics and Mallinckrodt. Herbert Y. Meltzer reports the following financial relationships: (1) ownership/investment interests in Suregene, ACADIA, and GlaxoSmithKline; (2) industry activities (such as speaking, advising, consulting, and providing educational programs) with Janssen Pharmaceuticals, Lundbeck Inc., Sunovion Pharmaceuticals Inc. (Dainippon Sumitomo Pharma Co., Ltd.), TEVA, BiolineRx, BI (Boehringer Ingelheim Pharma GmbH & Co. KG), Envivo, and Companion Diagnostics; (3) expert testimony with Janssen; and (4) current grants: Sunovion Novartis, Dainippon Sumitomo, Envivo, NeuroTherapeutics Pharma, Inc., Otsuka, Takeda, Alkermes, Naurex, Inc., and Astellas Research Institute of America.

Jiang Li has no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill W. Massey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Massey, B.W., Li, J., Meltzer, H.Y. (2014). Pharmacogenetics in the Treatment of Schizophrenia. In: Janicak, P., Marder, S., Tandon, R., Goldman, M. (eds) Schizophrenia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0656-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0656-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0655-0

  • Online ISBN: 978-1-4939-0656-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics