Skip to main content

Recent Advances in Neuroimaging Biomarkers of Schizophrenia

  • Chapter
  • First Online:
Schizophrenia

Abstract

Neuroimaging has shown much promise as potential biomarker for the diagnosis, prognosis, and treatment monitoring of schizophrenia. Studies have demonstrated that schizophrenia is associated with widespread alteration in the brain’s gray matter and white matter structure, and disruption in the brain’s connectivities and activities. More recent advances in neuroimaging data collection and analysis methods have allowed for the examination of these disruptions in a coordinated, global fashion. Analyses of large-scale networks using multivariate and multimodal approaches are providing evidence that schizophrenia is a disorder of neural and cognitive integration with subtle, multifocal abnormalities involving local changes of global brain network architecture. Notwithstanding current advances, critical questions remain unsettled regarding the utility of neuroimaging for individualized diagnosis and monitoring, clarifying disease mechanism with treatment and comorbidity, and characterizing psychosis spectra in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CP:

Context processing

CPT:

Continuous performance task

DMS:

Delayed match to sample

EF:

Executive function, including DMS, GNG, MA, NB, OB, SR, ST, WCS, and WG

EL:

Emotion-labeling

EME:

Episodic memory, encoding

EMR:

Episodic memory, retrieval

FF:

Fearful faces

FN:

Fear and neutral faces

GNG:

Go/No-Go

MA:

Mental arithmetic

NB:

N-Back

NF:

Negative faces

NI:

Negative images vs. neutral images

NV:

Nonvisual speech

OB:

Oddball

PC:

Pavlovian conditioning

RI:

Response inhibition

RP:

Reward prediction

SA:

Speech appraisal

SL:

Listening to speech

SP:

Speech/non-speech

SR:

Sequence recall

ST:

Stroop

VB:

Verbal fluency

WCS:

Wisconsin card sorting

WG:

Word generation

WM:

Working memory

ACC:

Anterior cingulate cortex

AG:

Amygdala

BG:

Basal ganglia

CD:

Caudate

CG:

Cingulate gyrus

DLPFC:

Dorsolateral prefrontal cortex

ERC:

Entorhinal cortex

GP:

Globus pallidus

HG:

Heschl’s gyrus

HP:

Hippocampus

IFG:

Inferior frontal gyrus

IPL:

Inferior parietal lobule

MPFC:

Medial prefrontal cortex

MSFG:

Medial superior frontal gyrus

MTG:

Middle temporal gyrus

MTL:

Medial temporal lobe

NAc:

Nucleus accumbens

OFG:

Orbitofrontal gyrus

PCC:

Posterior cingulate cortex

PFC:

Prefrontal cortex

PHG:

Parahippocampal gyrus

PPC:

Posterior parietal cortex

PT:

Planum temporale

PUT:

Putamen

STG:

Superior temporal gyrus

TH:

Thalamus

VLPFC:

Ventrolateral prefrontal cortex

VSTR:

Ventral striatum

AF:

Arcuate fasciculus, connecting STG and IPL with inferior frontal gyrus. AF is important in language processing

ALIC:

Anterior limb of the internal capsule

CB:

Cingulum bundle, connecting paralimbic-neocortical brain regions, also connecting limbic structures including DLPFC, CG, PHG, and AG. CB is involved in a number of functions, including pain perception, emotion, self-monitoring, and spatial orientation and memory

CC:

Corpus callosum

FX:

Fornix

ILF:

Inferior longitudinal fasciculus, connecting the anterior temporal and occipital regions

IOF:

Inferior occipitofrontal fasciculus, connecting the frontal with occipital and temporal lobes

PLIC:

Posterior limb of the internal capsule

SLF:

Superior longitudinal fasciculus, connecting the frontal, occipital, parietal, and temporal lobes

UF:

Uncinate fasciculus, connecting OFG and IFG with the anterior pole and the AG. UF is involved functionally in decision making, autobiographical and episodic memory, as well as in social behavior

FA:

Fractional anisotropy

MD:

Mean diffusivity

DMN:

Default mode network

References

  1. Kraepelin E. Dementia Praecox. New York: Churchill Livingstone, Inc.; 1919.

    Google Scholar 

  2. Bleuler E. Dementia praecox or the group of schizophrenias. New York: International Universities Press; 1911.

    Google Scholar 

  3. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet. 1976;ii:924–6.

    Google Scholar 

  4. Buckley PF. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications. Neuropsychiatr Dis Treat. 2005;1(3):193–204.

    PubMed Central  PubMed  Google Scholar 

  5. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.

    PubMed  CAS  Google Scholar 

  6. Moseley ME, Kucharczyk J, Mintorovitch J, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990;11(3):423–9.

    PubMed  CAS  Google Scholar 

  7. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16(3):210–24.

    PubMed  CAS  Google Scholar 

  8. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371–88.

    PubMed  CAS  Google Scholar 

  9. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190–1.

    CAS  Google Scholar 

  10. Hawkes RC, Holland GN, Moore WS, Worthington BS. Nuclear magnetic resonance (NMR) tomography of the brain: a preliminary clinical assessment with demonstration of pathology. J Comput Assist Tomogr. 1980;4(5):577–86.

    PubMed  CAS  Google Scholar 

  11. Holland GN, Hawkes RC, Moore WS. Nuclear magnetic resonance (NMR) tomography of the brain: coronal and sagittal sections. J Comput Assist Tomogr. 1980;4(4):429–33.

    PubMed  CAS  Google Scholar 

  12. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    PubMed  Google Scholar 

  14. Wesbey GE, Moseley ME, Ehman RL. Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol. 1984;19(6):491–8.

    PubMed  CAS  Google Scholar 

  15. Wesbey GE, Moseley ME, Ehman RL. Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol. 1984;19(6):484–90.

    PubMed  CAS  Google Scholar 

  16. Filler A. The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. Nature Precedings 2009.

    Google Scholar 

  17. Ai T, Morelli JN, Hu X, et al. A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol. 2012;47(12):725–41.

    PubMed  CAS  Google Scholar 

  18. Smith RC, Calderon M, Ravichandran GK, et al. Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Res. 1984;12(2):137–47.

    PubMed  CAS  Google Scholar 

  19. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88(2):237–94.

    PubMed  CAS  Google Scholar 

  20. Friston KJ. The disconnection hypothesis. Schizophr Res. 1998;30(2):115–25.

    PubMed  CAS  Google Scholar 

  21. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97.

    PubMed  CAS  Google Scholar 

  22. Cronenwett WJ, Csernansky J. Thalamic pathology in schizophrenia. In: Swerdlow NR, editor. Behavioral neurobiology of schizophrenia and its treatment. Berlin: Springer; 2010. p. 509–28.

    Google Scholar 

  23. Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev. 2011;35(5):1110–24.

    PubMed  Google Scholar 

  24. Pearlson GD, Marsh L. Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry. 1999;46(5):627–49.

    PubMed  CAS  Google Scholar 

  25. McCarley RW, Wible CG, Frumin M, et al. MRI anatomy of schizophrenia. Biol Psychiatry. 1999;45(9):1099–119.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Shenton ME, Whitford TJ, Kubicki M. Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues Clin Neurosci. 2010;12(3):317–32.

    PubMed Central  PubMed  Google Scholar 

  28. Karlsgodt KH, Jacobson SC, Seal M, Fusar-Poli P. The relationship of developmental changes in white matter to the onset of psychosis. Curr Pharm Des. 2012;18(4):422–33.

    PubMed  CAS  Google Scholar 

  29. Thomason ME, Thompson PM. Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol. 2011;7:63–85.

    PubMed  Google Scholar 

  30. Waddington JL. Neuroimaging and other neurobiological indices in schizophrenia: relationship to measurement of functional outcome. Br J Psychiatry. 2007;50(Suppl):s52–7.

    Google Scholar 

  31. McGuire P, Howes OD, Stone J, Fusar-Poli P. Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci. 2008;29(2):91–8.

    PubMed  CAS  Google Scholar 

  32. Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T. Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism. AJNR Am J Neuroradiol. 2012;33(11):2033–7.

    PubMed  CAS  Google Scholar 

  33. Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and connectomics. Neuroimage. 2012;62(4):2296–314.

    PubMed  Google Scholar 

  34. Andreasen N, Nasrallah HA, Dunn V, et al. Structural abnormalities in the frontal system in schizophrenia. A magnetic resonance imaging study. Arch Gen Psychiatry. 1986;43(2):136–44.

    PubMed  CAS  Google Scholar 

  35. Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry. 1998;172:110–20.

    PubMed  CAS  Google Scholar 

  36. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci. 2011;261 Suppl 2:S150–4.

    PubMed  Google Scholar 

  37. Pearlson GD, Calhoun V. Structural and functional magnetic resonance imaging in psychiatric disorders. Can J Psychiatry. 2007;52(3):158–66.

    PubMed  Google Scholar 

  38. Pantelis C, Yucel M, Bora E, et al. Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychol Rev. 2009;19(3):385–98.

    PubMed  Google Scholar 

  39. Levitt JJ, Bobrow L, Lucia D, Srinivasan P. A selective review of volumetric and morphometric imaging in schizophrenia. Curr Top Behav Neurosci. 2010;4:243–81.

    PubMed  Google Scholar 

  40. Palaniyappan L, Balain V, Liddle PF. The neuroanatomy of psychotic diathesis: a meta-analytic review. J Psychiatr Res. 2012;46(10):1249–56.

    PubMed  Google Scholar 

  41. Keshavan MS, Prasad KM, Pearlson G. Are brain structural abnormalities useful as endophenotypes in schizophrenia? Int Rev Psychiatry. 2007;19(4):397–406.

    PubMed  Google Scholar 

  42. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162(12):2233–45.

    PubMed  Google Scholar 

  43. Fornito A, Yucel M, Patti J, Wood SJ, Pantelis C. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res. 2009;108(1–3):104–13.

    PubMed  CAS  Google Scholar 

  44. Bora E, Fornito A, Radua J, et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127(1–3):46–57.

    PubMed  Google Scholar 

  45. Kindermann SS, Karimi A, Symonds L, Brown GG, Jeste DV. Review of functional magnetic resonance imaging in schizophrenia. Schizophr Res. 1997;27(2–3):143–56.

    PubMed  CAS  Google Scholar 

  46. Gur RE. Functional brain-imaging studies in schizophrenia. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven; 1995.

    Google Scholar 

  47. Renshaw PF, Yurgelun-Todd DA, Cohen BM. Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. Am J Psychiatry. 1994;151(10):1493–5.

    PubMed  CAS  Google Scholar 

  48. Wenz F, Schad LR, Knopp MV, et al. Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging. 1994;12(7):975–82.

    PubMed  CAS  Google Scholar 

  49. Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF. Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry. 1996;153(2):200–5.

    PubMed  CAS  Google Scholar 

  50. Buchsbaum MS, Tang CY, Peled S, et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport. 1998;9(3):425–30.

    PubMed  CAS  Google Scholar 

  51. Mccarley RW. Structural magnetic resonance imaging studies in schizophrenia. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  52. Lim KO, Hedehus M, Moseley M, de Crespigny A, Sullivan EV, Pfefferbaum A. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry. 1999;56(4):367–74.

    PubMed  CAS  Google Scholar 

  53. Kubicki M, Westin CF, Maier SE, et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry. 2002;159(5):813–20.

    PubMed Central  PubMed  Google Scholar 

  54. Berman KF. Functional neuroimaging in schizophrenia. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  55. Glahn DC, Ragland JD, Abramoff A, et al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp. 2005;25(1):60–9.

    PubMed  Google Scholar 

  56. Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry. 2009;166(8):863–74.

    PubMed Central  PubMed  Google Scholar 

  57. White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):97–109.

    PubMed  Google Scholar 

  58. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12(3):426–45.

    PubMed  CAS  Google Scholar 

  59. Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry. 2001;50(11):825–44.

    PubMed  CAS  Google Scholar 

  60. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90.

    PubMed  Google Scholar 

  61. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28(5):597–613.

    PubMed  CAS  Google Scholar 

  62. Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–56.

    PubMed  CAS  Google Scholar 

  63. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8(9):418–25.

    PubMed  Google Scholar 

  64. McIntosh AR. Towards a network theory of cognition. Neural Netw. 2000;13(8–9):861–70.

    PubMed  CAS  Google Scholar 

  65. Volkow ND, Wolf AP, Brodie JD, et al. Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophr Res. 1988;1(1):47–53.

    PubMed  CAS  Google Scholar 

  66. Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry. 1992;149(7):890–7.

    PubMed  CAS  Google Scholar 

  67. Bullmore ET, Frangou S, Murray RM. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res. 1997;28(2–3):143–56.

    PubMed  CAS  Google Scholar 

  68. Meyer-Lindenberg A, Poline JB, Kohn PD, et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry. 2001;158(11):1809–17.

    PubMed  CAS  Google Scholar 

  69. Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.

    PubMed  CAS  Google Scholar 

  70. McGuire PK, Frith CD. Disordered functional connectivity in schizophrenia. Psychol Med. 1996;26(4):663–7.

    PubMed  CAS  Google Scholar 

  71. Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ. Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage. 1999;9(3):337–42.

    PubMed  CAS  Google Scholar 

  72. Friston KJ. Theoretical neurobiology and schizophrenia. Br Med Bull. 1996;52(3):644–55.

    PubMed  CAS  Google Scholar 

  73. Liang M, Zhou Y, Jiang T, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport. 2006;17(2):209–13.

    PubMed  Google Scholar 

  74. Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain. 2009;132(Pt 9):2426–36.

    PubMed  Google Scholar 

  75. Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res. 2010;44(6):364–72.

    PubMed  Google Scholar 

  76. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry. 2002;51(12):1008–11.

    PubMed  Google Scholar 

  77. Wolf DH, Gur RC, Valdez JN, et al. Alterations of fronto-temporal connectivity during word encoding in schizophrenia. Psychiatry Res. 2007;154(3):221–32.

    PubMed Central  PubMed  Google Scholar 

  78. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.

    PubMed  Google Scholar 

  79. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry. 2007;164(3):450–7.

    PubMed  Google Scholar 

  80. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 2009;106(4):1279–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res. 2007;97(1–3):194–205.

    PubMed  Google Scholar 

  82. Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull. 2007;33(4):1004–12.

    PubMed Central  PubMed  Google Scholar 

  83. Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8:49–76.

    PubMed  Google Scholar 

  84. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.

    PubMed  Google Scholar 

  85. Sakoglu U, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. MAGMA. 2010;23(5–6):351–66.

    PubMed Central  PubMed  Google Scholar 

  86. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 2008;39(4):1666–81.

    PubMed Central  PubMed  Google Scholar 

  87. Honey GD, Pomarol-Clotet E, Corlett PR, et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain. 2005;128(Pt 11):2597–611.

    PubMed  Google Scholar 

  88. Kim DI, Manoach DS, Mathalon DH, et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp. 2009;30(11):3795–811.

    PubMed Central  PubMed  Google Scholar 

  89. Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia. Brain. 2008;131(Pt 4):945–61.

    PubMed  Google Scholar 

  90. Tan HY, Sust S, Buckholtz JW, et al. Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatry. 2006;163(11):1969–77.

    PubMed  Google Scholar 

  91. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci. 2008;28(37):9239–48.

    PubMed Central  PubMed  CAS  Google Scholar 

  92. van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci. 2010;30(47):15915–26.

    PubMed  Google Scholar 

  93. Wang L, Metzak PD, Honer WG, Woodward TS. Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. J Neurosci. 2010;30(39):13171–9.

    PubMed  CAS  Google Scholar 

  94. Yu Q, Sui J, Rachakonda S, et al. Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study. PLoS One. 2011;6(9):e25423.

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Zalesky A, Fornito A, Seal ML, et al. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry. 2011;69(1):80–9.

    PubMed  Google Scholar 

  96. Wang Q, Su TP, Zhou Y, et al. Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage. 2012;59(2):1085–93.

    PubMed  Google Scholar 

  97. Rubinov M, Knock SA, Stam CJ, et al. Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp. 2009;30(2):403–16.

    PubMed  Google Scholar 

  98. Yu Q, Plis SM, Erhardt EB, et al. Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Front Syst Neurosci. 2011;5:103.

    PubMed Central  PubMed  Google Scholar 

  99. He H, Sui J, Yu Q, et al. Altered small-world brain networks in schizophrenia patients during working memory performance. PLoS One. 2012;7(6):e38195.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. van den Berg D, Gong P, Breakspear M, van Leeuwen C. Fragmentation: loss of global coherence or breakdown of modularity in functional brain architecture? Front Syst Neurosci. 2012;6:20.

    PubMed Central  PubMed  Google Scholar 

  101. Schultz CC, Fusar-Poli P, Wagner G, et al. Multimodal functional and structural imaging investigations in psychosis research. Eur Arch Psychiatry Clin Neurosci. 2012;262 Suppl 2:S97–S106.

    PubMed  Google Scholar 

  102. Koch K, Schultz CC, Wagner G, et al. Disrupted white matter connectivity is associated with reduced cortical thickness in the cingulate cortex in schizophrenia. Cortex. 2013;49(3):722–9.

    PubMed  Google Scholar 

  103. Rasser PE, Johnston P, Lagopoulos J, et al. Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. Neuroimage. 2005;26(3):941–51.

    PubMed  Google Scholar 

  104. Schultz CC, Koch K, Wagner G, et al. Reduced anterior cingulate cognitive activation is associated with prefrontal-temporal cortical thinning in schizophrenia. Biol Psychiatry. 2012;71(2):146–53.

    PubMed  Google Scholar 

  105. Calhoun VD, Adali T, Giuliani NR, Pekar JJ, Kiehl KA, Pearlson GD. Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Hum Brain Mapp. 2006;27(1):47–62.

    PubMed  CAS  Google Scholar 

  106. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.

    PubMed Central  PubMed  Google Scholar 

  107. Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage. 2008;43(3):554–61.

    PubMed  Google Scholar 

  108. Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36(4):1140–52.

    PubMed  Google Scholar 

  109. Van Essen DC, Ugurbil K, Auerbach E, et al. The Human Connectome Project: a data acquisition perspective. Neuroimage. 2012;62(4):2222–31.

    PubMed Central  PubMed  Google Scholar 

  110. Woolley J, McGuire P. Neuroimaging in schizophrenia: what does it tell the clinician? Adv Psychiatr Treat. 2005;11(3):195–202.

    Google Scholar 

  111. Thompson DAW. On growth and form. Cambridge: Cambridge University Press; 1917.

    Google Scholar 

  112. Grenander U, Miller MI. Computational anatomy: an emerging discipline. Q Appl Math. 1998;LVI(4):617–94.

    Google Scholar 

  113. Miller MI, Qiu A. The emerging discipline of computational functional anatomy. Neuroimage. 2009;45 Suppl 1:S16–39.

    PubMed Central  PubMed  Google Scholar 

  114. Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol. 2003;2(2):79–88.

    PubMed  Google Scholar 

  115. Thompson PM, Miller MI, Ratnanather JT, Poldrack RA, Nichols TE. Preface to the special issue. NeuroImage 2004; 23 Suppl 1:S1. doi: 10.1016/j.neuroimage.2004.07.009.

  116. Klein A, Andersson J, Ardekani BA, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46(3):786–802.

    PubMed Central  PubMed  Google Scholar 

  117. Csernansky JG, Wang L, Joshi SC, Ratnanather JT, Miller MI. Computational anatomy and neuropsychiatric disease: probabilistic assessment of variation and statistical inference of group difference, hemispheric asymmetry, and time-dependent change. Neuroimage. 2004;23 Suppl 1:S56–68.

    PubMed  Google Scholar 

  118. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):5–14.

    PubMed  CAS  Google Scholar 

  119. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    PubMed  CAS  Google Scholar 

  120. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–59.

    PubMed  CAS  Google Scholar 

  121. Calhoun VD, Adali T, McGinty VB, Pekar JJ, Watson TD, Pearlson GD. fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. Neuroimage. 2001;14(5):1080–8.

    PubMed  CAS  Google Scholar 

  122. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51.

    PubMed  CAS  Google Scholar 

  123. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp. 2001;13(1):43–53.

    PubMed  CAS  Google Scholar 

  124. Calhoun VD, Adali T. Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng. 2012;5:60–73.

    PubMed  Google Scholar 

  125. Calhoun VD, Eichele T, Pearlson G. Functional brain networks in schizophrenia: a review. Front Hum Neurosci. 2009;3:17.

    PubMed Central  PubMed  Google Scholar 

  126. Lee MH, Smyser CD, Shimony JS. Resting-State fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34(10):1866–72.

    PubMed  CAS  Google Scholar 

  127. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2.

    PubMed  CAS  Google Scholar 

  129. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.

    PubMed  CAS  Google Scholar 

  130. Newman ME. Assortative mixing in networks. Phys Rev Lett. 2002;89(20):208701.

    PubMed  CAS  Google Scholar 

  131. Milgram S. Small-world problem. Psychol Today. 1967;1(1):61–7.

    Google Scholar 

  132. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    PubMed  CAS  Google Scholar 

  133. Wen W, He Y, Sachdev P. Structural brain networks and neuropsychiatric disorders. Curr Opin Psychiatry. 2011;24(3):219–25.

    PubMed  Google Scholar 

  134. Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci. 2006;273(1585):503–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Micheloyannis S, Pachou E, Stam CJ, et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006;87(1–3):60–6.

    PubMed  Google Scholar 

  136. Pachou E, Vourkas M, Simos P, et al. Working memory in schizophrenia: an EEG study using power spectrum and coherence analysis to estimate cortical activation and network behavior. Brain Topogr. 2008;21(2):128–37.

    PubMed  Google Scholar 

  137. Rutter L, Nadar SR, Holroyd T, et al. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks. Front Comput Neurosci. 2013;7:93.

    PubMed Central  PubMed  Google Scholar 

  138. Breakspear M, Terry JR, Friston KJ, et al. A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. Neuroimage. 2003;20(1):466–78.

    PubMed  CAS  Google Scholar 

  139. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22.

    PubMed Central  PubMed  Google Scholar 

  140. Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry. 2005;187:500–9.

    PubMed  Google Scholar 

  141. Goghari VM, Sponheim SR, MacDonald 3rd AW. The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev. 2010;34(3):468–86.

    PubMed Central  PubMed  Google Scholar 

  142. Kubicki M, McCarley R, Westin CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 2007;41(1–2):15–30.

    PubMed Central  PubMed  Google Scholar 

  143. van Veen V, Carter CS. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav. 2002;77(4–5):477–82.

    PubMed  Google Scholar 

  144. Shizukuishi T, Abe O, Aoki S. Diffusion tensor imaging analysis for psychiatric disorders. Magn Reson Med Sci. 2013;12(3):153–9.

    PubMed  Google Scholar 

  145. Boksman K, Theberge J, Williamson P, et al. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr Res. 2005;75(2–3):247–63.

    PubMed  Google Scholar 

  146. Ma S, Calhoun VD, Eichele T, Du W, Adali T. Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest. Neuroimage. 2012;62(3):1694–704.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the following NIH grants: 1R01 MH084803, 1 U01 MH097435, P50 MH071616, and R01 MH056584. The authors would like to thank Eva C. Alden, Katherine D. Blizinsky, and Daniel B. Stern for assistance on literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, L., Csernansky, J.G. (2014). Recent Advances in Neuroimaging Biomarkers of Schizophrenia. In: Janicak, P., Marder, S., Tandon, R., Goldman, M. (eds) Schizophrenia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0656-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0656-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0655-0

  • Online ISBN: 978-1-4939-0656-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics