Skip to main content

Genetics of Schizophrenia

  • Chapter
  • First Online:
Schizophrenia

Abstract

Many decades of study into the genetic epidemiology of schizophrenia consistently show familial clustering of the disorder, mostly due to genetic contributions. Early clues as to the complex genetic nature of schizophrenia risk are borne out in molecular studies (linkage and association). Linkage studies (optimized for simpler Mendelian conditions) and candidate gene association studies (more useful if a disorder’s pathophysiology is better known), however, are not as fruitful as genome-wide association studies (GWAS). Currently, schizophrenia GWAS are yielding a growing list of replicated individual risk loci (common variant, low effect size, individually detectable) tagged by single nucleotide polymorphisms (SNPs), copy number variant (CNV) risk loci (rare, high effect size, individually detectable), and polygenes (generally common, very low effect size, only detectable en masse). These risk variants and the genes they implicate are complemented by downstream analyses (network and pathway analyses), a variety of other “omics” approaches (e.g., transcriptomics, methylomics, proteomics, metabolomics), and deep re-sequencing studies (aimed at rare variants). Such approaches are shedding an unprecedented amount of light on the pathophysiology of schizophrenia. This includes its pleiotropic relationships to other conditions such as autism spectrum disorders (ASD), bipolar disorder (BP), and intellectual disability (ID). Such knowledge is still in need of further extension (e.g., tethering to gene function and connecting to established environmental risk factors), consolidation (examination in other datasets, such as Asian and African, and replication in even larger meta-analyses), and translation into clinical utility (risk prediction and, especially, improved pharmacological treatments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

22q11.21DS:

22q11.21 deletion syndrome

ANK3 :

Ankyrin 3

ASD:

Autism spectrum disorders

BP:

Bipolar disorder

CACNA1C :

Alpha subunit of the L-type calcium channel

CNV:

Copy number variant

DISC1 :

Disrupted in schizophrenia 1

DSM:

Diagnostic and Statistical Manual of Mental Disorders

eQTNs:

Expression quantitative trait nucleotides

GWAS:

Genome-wide association study

GWLS:

Genome-wide linkage scan

GWS:

Genome-wide significant

ISC:

International Schizophrenia Consortium

ITIH :

Inter-alpha-trypsin inhibitor heavy chains

LD:

Linkage disequilibrium

LOD:

Logarithm of the odds ratio

MGS:

Molecular Genetics of Schizophrenia

NRGN :

Neurogranin (protein kinase C substrate, RC3)

NRXN1 :

Neurexin 1

SGENE:

Schizophrenia Genetics Consortium

SNP:

Single nucleotide polymorphism

MAF:

Minor allele frequency

PGC-SZ:

Psychiatric Genomics Consortium for Schizophrenia

TCF4 :

Transcription factor 4

VCFS:

Velocardiofacial syndrome

VIPR2 :

Vasoactive intestinal peptide receptor 2

WGS:

Whole-genome sequencing

xMHC:

Extended major histocompatibility complex

References

  1. Gottesman II, Shields J. Schizophrenia: the epigenetic puzzle. Cambridge, MA: Cambridge University Press; 1982.

    Google Scholar 

  2. Yang J, Visscher PM, Wray NR. Sporadic cases are the norm for complex disease. Eur J Hum Genet. 2010;18(9):1039–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klaning U, Mortensen PB, Kyvik KO. Increased occurrence of schizophrenia and other psychiatric illnesses among twins. Br J Psychiatry. 1996;168(6):688–92.

    Article  CAS  PubMed  Google Scholar 

  4. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M. The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry. 1998;55(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  5. Franzek E, Beckmann H. Different genetic background of schizophrenia spectrum psychoses: a twin study. Am J Psychiatry. 1998;155(1):76–83.

    CAS  PubMed  Google Scholar 

  6. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry. 1999;56(2):162–8.

    Article  CAS  PubMed  Google Scholar 

  7. Cardno AG, Gottesman I. Twin studies of schizophrenia: from bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet. 2000;97(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  8. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.

    Article  PubMed  Google Scholar 

  9. Ingraham LJ, Kety SS. Adoption studies of schizophrenia. Am J Med Genet. 2000;97(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kraepelin E. Manic-depressive insanity and Paranoia. Edinburgh: E. & S. Livingstone (English translation 1921); 1899.

    Google Scholar 

  11. APA. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 4th ed., text revision ed. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  12. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 2009;14(8):774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet. 1998;20(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  14. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–92.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C, et al. Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample. Am J Hum Genet. 2006;78(2):315–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7(4):405–11.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet. 2003;73(1):34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV, et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry. 2009;14(8):786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders–cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001;69(2):428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C, et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry. 2008;165(4):497–506.

    Article  PubMed  Google Scholar 

  21. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106(23):9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet. 2008;16(5):635–43.

    Article  CAS  PubMed  Google Scholar 

  23. Halperin E, Stephan DA. SNP imputation in association studies. Nat Biotechnol. 2009;27(4):349–51.

    Article  CAS  PubMed  Google Scholar 

  24. Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A. A comprehensive evaluation of SNP genotype imputation. Hum Genet. 2009;125(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  25. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52.

    CAS  PubMed  Google Scholar 

  27. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol. 2008;32(3):227–34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967;58(1):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gill M. Developmental psychopathology: the role of structural variation in the genome. Dev Psychopathol. 2012;24(4):1319–34.

    Article  PubMed  Google Scholar 

  31. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565–75.

    Article  CAS  PubMed  Google Scholar 

  33. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122(Pt 4):593–624.

    Article  PubMed  Google Scholar 

  34. Owen MJ, O’Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry. 2011;198(3):173–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43(10):969–76.

    Article  CAS  Google Scholar 

  36. Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet. 2012;44(3):247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ripke S, O’Dushlaine C, Chambert K, Moran JL, KŠhler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150–9. doi:10.1038/ng.2742.

    Article  CAS  PubMed  Google Scholar 

  38. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12):889–99.

    Article  CAS  PubMed  Google Scholar 

  39. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E, et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry. 2006;163(3):521–8.

    Article  PubMed  Google Scholar 

  40. Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis. 2012;45(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dempster E, Viana J, Pidsley R, Mill J. Epigenetic studies of schizophrenia: progress, predicaments, and promises for the future. Schizophr Bull. 2013;39(1):11–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pich EM, Vargas G, Domenici E. Biomarkers for antipsychotic therapies. Handb Exp Pharmacol. 2012;212:339–60.

    Article  PubMed  Google Scholar 

  43. Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology. 2013;38(1):138–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Labrie V, Pai S, Petronis A. Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet. 2012;28(9):427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sullivan P. Don’t give up on GWAS. Mol Psychiatry. 2012;17(1):2–3.

    Article  CAS  PubMed  Google Scholar 

  47. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011;43(9):860–3.

    Article  CAS  PubMed  Google Scholar 

  48. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet. 2011;43(9):864–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet. 2012;91(2):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulze TG, Hedeker D, Zandi P, Rietschel M, McMahon FJ. What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. Arch Gen Psychiatry. 2006;63(12):1368–76.

    Article  PubMed  Google Scholar 

  51. Goes FS, Zandi PP, Miao K, McMahon FJ, Steele J, Willour VL, et al. Mood-incongruent psychotic features in bipolar disorder: familial aggregation and suggestive linkage to 2p11-q14 and 13q21-33. Am J Psychiatry. 2007;164(2):236–47.

    Article  PubMed  Google Scholar 

  52. Kasanin J. The acute schizoaffective psychoses. Am J Psychiatry. 1933;90(1):97–126.

    Google Scholar 

  53. Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O, et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. Arch Gen Psychiatry. 1993;50(11):871–83.

    Article  CAS  PubMed  Google Scholar 

  54. Maier W, Lichtermann D, Franke P, Heun R, Falkai P, Rietschel M. The dichotomy of schizophrenia and affective disorders in extended pedigrees. Schizophr Res. 2002;57(2–3):259–66.

    Article  PubMed  Google Scholar 

  55. Gershon ES, DeLisi LE, Hamovit J, Nurnberger Jr JI, Maxwell ME, Schreiber J, et al. A controlled family study of chronic psychoses. Schizophrenia and schizoaffective disorder. Arch Gen Psychiatry. 1988;45(4):328–36.

    Article  CAS  PubMed  Google Scholar 

  56. Gershon ES, Hamovit J, Guroff JJ, Dibble E, Leckman JF, Sceery W, et al. A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands. Arch Gen Psychiatry. 1982;39(10):1157–67.

    Article  CAS  PubMed  Google Scholar 

  57. Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, Walsh D. The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry. 1993;50(7):527–40.

    Article  CAS  PubMed  Google Scholar 

  58. Valles V, Van Os J, Guillamat R, Gutierrez B, Campillo M, Gento P, et al. Increased morbid risk for schizophrenia in families of in-patients with bipolar illness. Schizophr Res. 2000;42(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  59. Van Snellenberg JX, de Candia T. Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. Arch Gen Psychiatry. 2009;66(7):748–55.

    Article  PubMed  Google Scholar 

  60. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373(9659):234–9.

    Article  CAS  PubMed  Google Scholar 

  61. Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. 2013;381(9878):1654–62.

    Article  CAS  PubMed  Google Scholar 

  62. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13(6):558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. WTCCC. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  64. Costain G, Bassett AS. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. Appl Clin Genet. 2012;5:1–18.

    PubMed  PubMed Central  Google Scholar 

  65. Malhotra AK, Zhang JP, Lencz T. Pharmacogenetics in psychiatry: translating research into clinical practice. Mol Psychiatry. 2012;17(8):760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clarke MC, Kelleher I, Clancy M, Cannon M. Predicting risk and the emergence of schizophrenia. Psychiatr Clin North Am. 2012;35(3):585–612.

    Article  PubMed  Google Scholar 

  67. Byrne M, Agerbo E, Bennedsen B, Eaton WW, Mortensen PB. Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res. 2007;97(1–3):51–9.

    Article  PubMed  Google Scholar 

  68. Mittal VA, Ellman LM, Cannon TD. Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull. 2008;34(6):1083–94.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry. 1992;49(12):983–8.

    Article  CAS  PubMed  Google Scholar 

  70. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA. 2005;294(5):557–62.

    Article  CAS  PubMed  Google Scholar 

  71. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  72. Casadio P, Di Forti M, Murray RM. Cannabis use as a component cause of schizophrenia. In: Brown AS, Patterson PH, editors. The origins of schizophrenia. New York: Columbia University Press; 2011. p. 157–75.

    Google Scholar 

  73. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  74. Torrey EF, Buka S, Cannon TD, Goldstein JM, Seidman LJ, Liu T, et al. Paternal age as a risk factor for schizophrenia: how important is it? Schizophr Res. 2009;114(1–3):1–5.

    Article  PubMed  Google Scholar 

  75. Brennand KJ, Simone A, Tran N, Gage FH. Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry. 2012;17(12):1239–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Sanders .

Editor information

Editors and Affiliations

Glossary

ENCODE 

Refers to the Encyclopedia Of DNA Elements project to identify all functional elements in the human genome sequence

Exome sequencing 

The DNA sequencing of the exons in the genome, most often referring to the protein coding exons, i.e., not including all untranslated regions (UTRs)

Expression quantitative trait nucleotides (eQTNs) 

Are SNPs that regulate expression levels of mRNAs or proteins

Genomics 

Refers to mapping or sequencing of whole genomes (as opposed to focusing on an individual gene)

Linkage disequilibrium 

Abbreviated LD, the nonrandom association of alleles (alternative forms) at two or more loci, which descended from an ancestral chromosome

Metabolomics 

The study of the whole set of metabolites (small molecule end products of cellular processes, i.e., metabolism) of a biological unit (cell, tissue, organ, individual)

Methylomics 

The study of DNA methylation (which affects gene expression) on a genome-wide scale

Network or pathway analyses 

The study of a biological system with subunits connected into a larger patterns (networks, pathways), such as a protein–protein interaction network or a gene regulatory (e.g., DNA–protein interaction) network

Nonparametric linkage analysis 

A type of linkage analysis where no assumptions or specifications are made regarding the genetic model for the disorder

Parametric linkage analysis 

A type of linkage analysis where the genetic model for the disorder must be specified, i.e., allele frequency and penetrance (likelihood a risk genotype will be phenotypically expressed) parameters

Pharmacogenetics 

The study of genetic differences affecting metabolic pathways important for drug response (including both therapeutic and side effects)

Polygenic contributions 

The situation when variants at many genes contribute to a phenotype, as opposed to the phenotype arising from variation at one (monogenic) or a few genes (oligogenic)

Polymorphic 

Having more than one form, as in a genetic maker with more than one allele (alternative form)

Proteomics 

The study of an entire complement of proteins of a biological unit

Transcriptomics 

The study of the set of all RNA (mRNA, rRNA, tRNA, and other noncoding RNA) of a biological unit (typically a collection of cells or a tissue), though in many instances limited to the study of mRNA

Whole-genome sequencing 

The DNA sequencing of the whole genome of an individual, i.e., all chromosomes and also mitochondrial DNA

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanders, A.R. (2014). Genetics of Schizophrenia. In: Janicak, P., Marder, S., Tandon, R., Goldman, M. (eds) Schizophrenia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0656-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0656-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0655-0

  • Online ISBN: 978-1-4939-0656-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics