Skip to main content

EPR Image Based Oxygen Movies for Transient Hypoxia

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 812))

Abstract

Chronic hypoxia strongly affects the malignant state and resistance to therapy for tumors. Transient hypoxia has been hypothesized, but not proven to be more deleterious. Electron paramagnetic resonance imaging (EPRI) provides non-invasive, quantitative imaging of static pO2 in vivo. Dynamic EPRI produces pO2 movies, enabling non-invasive assessment of in vivo pO2 changes, such as transient hypoxia. Recent developments have been made to enable Dynamic EPRI. Maximally spaced projection sequencing has been implemented to allow for more accurate and versatile acquisition of EPRI data when studying dynamic systems. Principal component analysis filtering has been employed to enhance SNR. Dynamic EPRI studies will provide temporally resolved oxygen movies necessary to perform in vivo studies of physiologically relevant pO2 changes in tumors. These oxygen movies will allow for the localization/quantification of transient hypoxia and will therefore help to disentangle the relationship between chronic and transient hypoxia, in order to better understand their roles in therapeutic optimization and outcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25:4066–4074

    Article  PubMed  Google Scholar 

  2. Schwarz G (1909) Uber Desensibilisierung gegen Rontgen-und Radiumstrahlen. Munch Med Wochenschr 56:1217

    Google Scholar 

  3. Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  4. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    CAS  PubMed  Google Scholar 

  5. Shannon AM, Bouchier-Hayes DJ, Condron CM et al (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  CAS  PubMed  Google Scholar 

  7. Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76:589–605

    Article  CAS  PubMed  Google Scholar 

  8. Thomlinson RH, Gray LH (1955) The histological structure of human lung cancers and the possible implications for radiotherapy. Br J Radiol 9:539–563

    CAS  Google Scholar 

  9. Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52:650–656

    Article  CAS  PubMed  Google Scholar 

  10. Chaplin DJ, Olive PL, Durand RE (1987) Intermittent blood-flow in a murine tumor – radiobiological effects. Cancer Res 47:597–601

    CAS  PubMed  Google Scholar 

  11. Trotter MJ, Chaplin DJ, Olive PL (1991) Possible mechanisms for intermittent blood-flow in the murine SCCVII carcinoma. Int J Rad Biol 60:139–146

    Article  CAS  PubMed  Google Scholar 

  12. Durand RE, Lepard NE (1995) Contribution of transient blood-flow to tumor hypoxia in mice. Acta Oncol 34:317–323

    Article  CAS  PubMed  Google Scholar 

  13. Rofstad EK, Galappathi K, Mathiesen B et al (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13:1971–1978

    Article  CAS  PubMed  Google Scholar 

  14. Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors: controversial data concerning time frames and biological consequences. Strahlenther Onkol 188:616–627

    Article  CAS  PubMed  Google Scholar 

  15. Elas M, Ahn KH, Parasca A et al (2006) Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with oxylite oxygen measurements. Clin Cancer Res 12:4209–4217

    Article  CAS  PubMed  Google Scholar 

  16. Epel B, Sundramoorthy SV, Mailer C et al (2008) A versatile high speed 250 MHz pulse imager for biomedical applications. Concept Magn Reson B 33B:163–176

    Article  Google Scholar 

  17. Epel B, Sundramoorthy SV, Barth ED et al (2011) Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications. Med Phys 38:2045–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Epel B, Haney CR, Hleihel D et al (2010) Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe delivery. Med Phys 37:2553–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elas M, Williams BB, Parasca A et al (2003) Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 49:682–691

    Article  PubMed  Google Scholar 

  20. Ahmad R, Deng YM, Vikram DS et al (2007) Quasi Monte Carlo-based isotropic distribution of gradient directions for improved reconstruction quality of 3D EPR imaging. J Magn Reson 184:236–245

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad R, Vikram DS, Clymer B et al (2007) Uniform distribution of projection data for improved reconstruction quality of 4D EPR imaging. J Magn Reson 187:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redler G, Epel B, Halpern HJ (2013) Principal component analysis enhances SNR for dynamic electron paramagnetic resonance oxygen imaging of cycling hypoxia in vivo. Magn Reson Med (unpublished)

    Google Scholar 

Download references

Acknowledgments

Supported by NIH grants P41 EB002034 and R01 CA98575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Halpern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Redler, G., Epel, B., Halpern, H.J. (2014). EPR Image Based Oxygen Movies for Transient Hypoxia. In: Swartz, H.M., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXXVI. Advances in Experimental Medicine and Biology, vol 812. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0620-8_17

Download citation

Publish with us

Policies and ethics