Skip to main content

Network-Based Correlation Analysis of Metabolic Fingerprinting Data

  • Chapter
  • First Online:
Correlation-based network analysis of cancer metabolism

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS))

Abstract

Correlation analysis, first invented by Francis Galton and later scientifically conceptualised by Karl Pearson, has many powerful applications in biology for describing causality in biological systems. Ever since the 1920s, causation has been connected with correlation in this way. The underlying mechanisms in biological processes are shadowed in correlations that when analysed can reveal connections in biological data that provide a starting point to realise underlying biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518. doi:10.1371/journal.pcbi.1002518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camacho D, de la FA, Mendes P (2005) The origin of correlations in metabolomics data. Metabolomics 1(1):53–63. doi:10.1007/s11306-005-1107-3

    Article  CAS  Google Scholar 

  • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782. doi:10.1073/pnas0610772104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. doi:10.1093/nar/28.1.27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kotze H, Armitage E, Sharkey K, Allwood J, Dunn W, Williams K, Goodacre R (2013) A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Syst Biol 7(1):107

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma H, Zeng A-P (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Ma HW, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135. doi:10.1038/msb4100177

    Article  PubMed Central  PubMed  Google Scholar 

  • Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, Walley AJ, Froguel P, Carlsson LM, Uhlen M, Nielsen J (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649. doi:10.1038/msb.2013.5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  • Shipley B (2004) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Steuer R (2006) Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform 7(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Stifanelli P, Creanza T, Anglani R, Liuzzi V, Mukherjee S, Ancona N (2011) A comparative study of Gaussian Graphical Model approaches for genomic data. arXiv preprint arXiv:11070261

    Google Scholar 

  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Boelling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JHGM, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425. doi:10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  • Toni T, Tidor B (2013) Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology. PLoS Comput Biol 9(3):e1002960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610. doi:10.1093/nar/gkn810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily G. Armitage .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Authors

About this chapter

Cite this chapter

Armitage, E., Kotze, H., Williams, K. (2014). Network-Based Correlation Analysis of Metabolic Fingerprinting Data. In: Correlation-based network analysis of cancer metabolism. SpringerBriefs in Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0615-4_4

Download citation

Publish with us

Policies and ethics