Skip to main content

The Rise of Cognition

  • Chapter
  • First Online:
The Nature of Language
  • 1712 Accesses

Abstract

Comparative studies with macaques and chimpanzees indicate how the left-sided fronto-temporal language circuits might have evolved in modern humans. In particular, tractographic findings show a gradual adaptation to spoken language processing. In light of these findings, the role of mirror neurons is discussed. In turn, the vocalization abilities, particularly in songbirds, let us conclude that despite common features the ability to compute simple recursive hierarchical structures in a symbolic fashion seems to be unique to modern humans. When the transition to crossmodal neural projection occurred, is difficult to determine, but the increase of cranial capacity in Homo erectus indicate that this species is a good candidate for proto-language. We further illustrate how different cultural stages may reflect the development of cognition and of a more sophisticated language system in the human lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paul P. Broca (1824–1880), a French surgeon and anthropologist, presented in 1861 at the Society of Anthropology of Paris the patient “Leborgne,” who was only able to produce the automatism “tan.” The autopsy revealed a lesion in the third convolution of the left frontal lobe. According to today’s diagnostic methods, he would have been classified as a global aphasic patient. Often, this discovery is considered as the birth of cognitive neuropsychology, although similar observations were made generations earlier by the French neurologist Marc Dax (1836).

  2. 2.

    In 1909, Korbinian Brodmann (1868–1918), a neurologist from Germany, divided the cortex into 52 distinct cortical regions by considering cytoarchitectonic features.

  3. 3.

    Carl Wernicke (1848–1905), a German physician resided in Breslau (Wrocław), discovered an aphasic syndrome caused by lesions in the superior temporal lobe with parietal portions. He predicted a third aphasic syndrome based on his and of Paul Broca’s discovery: conduction aphasia (original term: “Leitungsaphasie”). Moreover, Lichtheim (1884) developed the so-called Wernicke–Lichtheim diagram to predict four more aphasic syndromes.

  4. 4.

    Fibers consist of axon bundles that originate from neurons in the (sub)cortical gray matter. Three types of fibers are defined: (1) commissural fibers, which connect the hemispheres; (2) projection fibers, which either connect the cortex to the internal capsule, basal ganglia, brainstem, and spinal cord (corticofugal fibers) or connect the thalamus to the cortex (corticopedal fibers); and (iii) association fibers, which connect adjacent and nonadjacent cortical regions within the same hemisphere and are referred to as short and long association fibers, respectively.

  5. 5.

    A phoneme is the smallest discrete segmental speech sound (or group of sounds) to form meaningful contrasts between utterances. They can carry stress and tones and can be further decomposed into single phonemic features.

  6. 6.

    Prosimians are primates including lemurs, lorises, bushbabies, and tarsiers and in particular native to Madagascar. Simians are monkeys, apes and humans.

  7. 7.

    K. Brodmann (1909) divides the neurons of the cerebral cortex into six main layers, from the pia (mater) to the white matter.

  8. 8.

    The most popular neuroimaging technique among cognitive neuroscientists is MRI. The invention of MRI did not arrive in one step and was the results of a series of accomplishments in physics. A description of the methods and mechanisms behind MRI goes beyond the scope of the present chapter and the reader will be referred to adequate tutorials (e.g., Pooley, 2005). But let us briefly summarize some important facts about these important but still developing noninvasive neuroimaging techniques. The most common kind of MRI is known as blood oxygenation level-dependent (BOLD) imaging and credited to Ogawa et al. (1990). Neurons receive energy in form of oxygen by means of hemoglobin in capillary red blood cells. An increase of neuronal activity results in an increased demand for oxygen, which in turn generates an increase in blood flow. Hemoglobin is unaffected by the magnetic field (diamagnetic) when oxygenated but strongly affected (paramagnetic) when deoxygenated. The magnetic field is generated by an MRI scanner, which houses a strong electromagnet. For research purposes, the strength of the magnetic field is typically 3 T (1 T = 10,000 G) and is 50,000 times greater than the Earth’s field. It is predicted that the spatial resolution at the cell level requires high-field magnets (far > 10 T; Wada et al., 2010). This difference in magnetic properties causes small differences in the MR signal of blood depending on the degree of oxygenation. The level of neural activity varies with the level of blood oxygenation. This hemodynamic response (HDR) is not linear. The onset of the stimulus-induced HDR is usually delayed by ca. 2 s because of the time it takes that the blood travels from arteries to capillaries and draining veins. There is typically a short period of decrease in blood oxygenation immediately after neural activity increases. Then, the blood flow increases not only to meet the oxygen demand, but to overcompensate the increased demand. The blood flow peaks at around 6–12 s, before returning to baseline. In contrast to a relatively good spatial resolution of < 1 mm, the temporal resolution has its limits.

  9. 9.

    Amniotes are animals that are adapted to survive in a terrestrial environment. They develop a layered environment, in which their offspring can grow regardless of whether they give birth or lay eggs. Amniotes evolved during the Carboniferous period ca. 320 mya from amphibian reptiliomorphs and include today all reptiles, birds, and mammals.

  10. 10.

    It needs to be considered that a restricted phrase structure grammar can be approximated by a more elaborated finite-state grammar (e.g., memorized list of exemplars). Thus, it is important to use appropriate control trials such as the distinction between ungrammatical and grammatical strings).

  11. 11.

    Although the distinction between a natural and a trained setting is important, overall it may be less significant for understanding the plasticity of an animal’s cognitive capacity. Most human cognitive skills require training to be recognized as such. One might assume that even in animals cognitive capacities may change or increase as result of continuous training across many generations.

  12. 12.

    EQ is a measure of relative brain size. It reflects the ratio between actual brain mass and predicted brain mass of an organism of a given body size.

  13. 13.

    The term “Oldowan” (pebble tools) refers to Olduvai Gorge in Tanzania, where the first stone tools were found.

  14. 14.

    The term “Acheulean” refers to a region in Amiens, northern France, where hand-axes were found in the middle of the nineteenth century.

References

  • Aboitiz, F. (2012). Gestures, vocalizations, and memory in language origins. Frontiers in Evolutionary Neuroscience, 4(2).

    Google Scholar 

  • Alp, R. (1993). Meat eating and ant dipping by wild chimpanzees in Sierra Leone. Primates, 34(4), 463–468.

    Google Scholar 

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. The Behavioral and Brain Sciences, 28(2), 105–124; discussion 125–167.

    Google Scholar 

  • Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.

    Article  PubMed  Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7(10), e46610.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berwick, R. C., Okanoya, K., Beckers, G. J. L., & Bolhuis, J. J. (2011). Songs to syntax: The linguistics of birdsong. Trends in Cognitive Sciences, 15(3), 113–121.

    Article  PubMed  Google Scholar 

  • Bickerton, D. (1990). Language and species. Chicago: The University of Chicago Press.

    Google Scholar 

  • Bickerton, D. (2009). Adam’s tongue: How humans made language, how language made humans. New York: Hill and Wang.

    Google Scholar 

  • Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–759.

    Article  PubMed  Google Scholar 

  • Bosman, C., Garcı́a, R., & Aboitiz, F. (2004). FOXP2 and the language working-memory system. Trends in Cognitive Sciences, 8(6), 251–252.

    Article  PubMed  Google Scholar 

  • Broadfield, D. C., Holloway, R. L., Mowbray, K., Silvers, A., Yuan, M. S., Márquez, S. (2001). Endocast of Sambungmacan 3 (Sm 3): A new Homo erectus from Indonesia. Anatomical Record, 262(4), 369–379.

    Article  PubMed  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Bart.

    Google Scholar 

  • Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48(4), 687–697.

    Article  PubMed  Google Scholar 

  • Cantalupo, C., & Hopkins, W. D. (2001). Asymmetric Broca’s area in great apes. Nature, 414(6863), 505.

    Article  PubMed Central  PubMed  Google Scholar 

  • Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.

    Article  PubMed  Google Scholar 

  • Corballis, M. C. (2003). From mouth to hand: Gesture, speech and the evolution of right-handedness. The Behavioral and Brain Sciences, 26(2), 199–208.

    PubMed  Google Scholar 

  • Crockford, C., & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142, 397–421.

    Article  Google Scholar 

  • Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: A case for vocal learning? Ethology, 110(3), 221–243.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Google Scholar 

  • Dax, M. (1836). Lésions de la moitié gauche de l’encéphale coïncident avec l’oubli des signes de la pensée. Bulletin hebdomadaire de médecine et de chirurgie, 2me série, 2, 259–262.

    Google Scholar 

  • Deacon, T. W. (1992). Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Research, 573, 8–26.

    Article  PubMed  Google Scholar 

  • Deacon, T. W. (1997) The symbolic species: The coevolution of language and the brain. New York: Norton.

    Google Scholar 

  • Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: Consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529–3550.

    Article  PubMed  Google Scholar 

  • Falk, D. (2007). Evolution of the primate brain. In W. Henke & I. Tattersall (Eds.), Handbook of palaeoanthropology, Vol. 2: Primate evolution and human origins. Berlin: Springer.

    Google Scholar 

  • Falk, D. (2007). Constraints on brain size: The radiator hypothesis. In J. H. Kaas (Ed.), The evolution of nervous systems (pp. 347–354). Oxford: Academic.

    Google Scholar 

  • Fitch, W. T. (2000). The phonetic potential of nonhuman vocal tracts: Comparative cineradiographic observations of vocalizing animals. Phonetica, 57(2-4), 205–218.

    Article  PubMed  Google Scholar 

  • Fitch, W. T. (2002). Comparative vocal production and the evolution of speech: Reinterpreting the descent of the larynx. In A. Wray (Ed.), The transition to language (pp. 21–45). Oxford: Oxford University Press.

    Google Scholar 

  • Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377–380.

    Article  PubMed  Google Scholar 

  • Fleagle, J. G. (1999). Primate adaptation and evolution. San Diego: Academic.

    Google Scholar 

  • Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26, 10–46.

    Article  Google Scholar 

  • Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. The Journal of Neuroscience, 28(45), 11435–11444.

    Article  PubMed  Google Scholar 

  • Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–254.

    Article  PubMed  Google Scholar 

  • Galaburda, A. M., & Pandya, D. N. (1982). Role of architectonics and connections in the study of primate brain evolution. In E. Armstrong & D. Falk (Eds.), Primate brain evolution: Methods and concepts (pp. 203–216). New York: Plenum.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119(2), 593–609.

    Article  Google Scholar 

  • Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279(5348), 220–222.

    Article  PubMed  Google Scholar 

  • Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–1207.

    Article  PubMed Central  PubMed  Google Scholar 

  • Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–2482.

    Article  PubMed  Google Scholar 

  • Hauser, M. D., & Fitch, W. T. (2003). What are the uniquely human components of the language faculty? In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 158–181). Oxford: University Press Scholarship.

    Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it and how did it evolve? Science, 298, 1569–1579.

    Article  PubMed  Google Scholar 

  • Henshilwoo, C. S., d’Errico, F., van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Lauritzen, S. E., Menu, M., García-Moreno, R. (2011). 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science, 334(6053), 219–222.

    Article  Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67–99.

    Article  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.

    Article  PubMed  Google Scholar 

  • Holloway, R. L. & de La Costelareymondie, M.C. (1982). Brain endocast asymmetry in pongids and hominids: Some preliminary findings on the paleontology of cerebral dominance. American Journal of Physical Anthropology, 58(1), 101–110.

    Article  PubMed  Google Scholar 

  • Holloway, R. L. (2002). Brief communication: How much larger is the relative volume of area 10 of the prefrontal cortex in humans? American Journal of Physical Anthropology, 118(4), 339–401.

    Article  Google Scholar 

  • Hopkins, W. D., Marino, L., Rilling, J. K., & MacGregor, L. A. (1998). Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). NeuroReport, 9, 2913–2918.

    Article  PubMed  Google Scholar 

  • Izumi, A. & Kojima, S. (2004). Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes). Animal Cognition, 7(3), 179–184.

    Article  PubMed  Google Scholar 

  • Jackendoff, R. (1987). The status of thematic relations in linguistic theory. Linguistic Inquiry, 18(3), 369–411.

    Google Scholar 

  • Jackson, W. J., Reite, M. L., & Buxton, D. F. (1969). The chimpanzee central nervous system: A comparative review. Primates in Medicine, 4, 1–51.

    PubMed  Google Scholar 

  • Jarvis, E. D. (2006). Evolution of vocal learning systems in birds and humans. In: J. Kass (Ed.), Evolution of nervous systems, vol. 2 (pp. 213–228). Waltham: Academic.

    Google Scholar 

  • Jürgens, U. (2003). From mouth to mouth and hand to hand: On language evolution. Behavioral and Brain Sciences, 26(2), 229–230.

    Article  Google Scholar 

  • Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice: Official Journal of the Voice Foundation, 23(1), 1–10.

    Article  Google Scholar 

  • Kako, E. (1999). Elements of syntax in the systems of three language-trained animals. Animal Learning & Behavior, 27(1), 1–14.

    Article  Google Scholar 

  • Kelly, C. & Uddin, L. Q., Shehzad, Z., Margulies, D. S., Xavier Castellanos, F., Milham, M. P., & Petrides, M. (2010). Broca’s region: Linking human brain functional connectivity data and non-human primate tracing anatomy studies. European Journal of Neuroscience, 32, 383–398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing Sounds, Understanding Actions: Action Representation in Mirror Neurons. Science, 297(5582), 846–848.

    Google Scholar 

  • Lam, Y.-W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20(1), 13–24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Levréro, F., & Mathevon, N. (2013). Vocal signature in wild infant chimpanzees. American Journal of Primatology, 75(4), 324–332.

    Article  PubMed  Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.

    Article  PubMed  Google Scholar 

  • Lichtheim, L. (1884). Ueber Aphasie. Deutsches Archiv Für Klinische Medicin, 36, 204–268.

    Google Scholar 

  • Lieberman, P. (1968). Primate vocalizations and human linguistic ability. Journal of the Acoustic Society of America, 44, 1574–1584.

    Google Scholar 

  • Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59(3-4), 425–443.

    Article  PubMed  Google Scholar 

  • Matelli, M., Luppino, G., & Rizzolatti, G. (1985). Patterns of cytochrome oxidase activity in the frontal agranular cortex of macaque monkey. Behavioural Brain Research, 18, 125–136.

    Article  PubMed  Google Scholar 

  • McElligott, A.G., Birrer, M., & Vannoni, E. (2006). Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. Journal of Zoology, 270(2), 340–345.

    Article  Google Scholar 

  • Nishimura, T. (2003). Comparative morphology of the hyo-laryngeal complex in anthropoids: Two steps in the evolution of the descent of the larynx. Primates, 44, 41–49.

    PubMed  Google Scholar 

  • Nishimura, T., Mikami, A., Suzuki, J., & Matsuzawa, T. (2003). Descent of the larynx in chimpanzee infants. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 6930–6933.

    Article  PubMed Central  PubMed  Google Scholar 

  • Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537.

    Article  PubMed  Google Scholar 

  • Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 14(1), 68–78.

    Article  Google Scholar 

  • Payne, R. S., & McVay, S. (1971). Songs of humpback whales. Science, 173(3997), 585–597.

    Article  PubMed  Google Scholar 

  • Petkov, C. I. & Jarvis, E. D. (2012). Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4.:12. doi: 10.3389/fnevo.2012.00012

    Google Scholar 

  • Petrides, M., & Pandya, D. N. (2006). Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. The Journal of Comparative Neurology, 498(2), 227–251.

    Article  PubMed  Google Scholar 

  • Petrides, M., & Pandya, D. N. (2009). Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biology, 7(8), e1000170.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pooley, R. A. (2005). AAPM/RSNA physics tutorial for residents: Fundamental physics of MR imaging. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 25(4), 1087–1099.

    Article  Google Scholar 

  • Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. The Journal of Comparative Neurology, 310(4), 475–506.

    Article  PubMed  Google Scholar 

  • Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hearing Research, 271, 16–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Riede, T., Owren, M. J., & Arcadi, A. C. (2004). Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, 64(3), 277–291.

    Article  PubMed  Google Scholar 

  • Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11, 426–428.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131–141.

    Article  PubMed  Google Scholar 

  • Rolheiser, T., Stamatakis, E. A., & Tyler, L. K. (2011). Dynamic processing in the human language system: Synergy between the arcuate fascicle and extreme capsule. The Journal of Neuroscience, 31(47), 16949–16957.

    Article  PubMed Central  PubMed  Google Scholar 

  • Russel, B. (1903). The principles of mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Saur, D., Kreher B. W., Schnell S., Kümmerer D., Kellmeyer P., Vry M. S., Umarova R., Musso M., Glauche V., Abel S., Huber W., Rijntjes M., Hennig J, Weiller C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Science, 105(46), 18035–18040.

    Article  Google Scholar 

  • Saxe, R. & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychology Science, 17(8), 692–699.

    Article  Google Scholar 

  • Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., Crespigny, A. J. de, & Wedeen, V. J. (2007). Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(3), 630–653.

    Article  PubMed  Google Scholar 

  • Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., and Van Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: A comparative study of area 13. American Journal of Physical Anthropology, 106, 129–155.

    Google Scholar 

  • Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J., & Hof, P. R. (2003) Variability of Broca’s area homologue in African great apes: Implications for language evolution. Anatomical Record A. Discoveries in Molecular Cellular Evolutionary Biology, 271(2), 276–285.

    Article  Google Scholar 

  • Slocombe, K. E., & Zuberbühler, K. (2007). Chimpanzees modify recruitment screams as a function of audience composition. Proceedings of the National Academy of Sciences of the United States of America, 104, 17228–17233.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stout, D. (2008). Technology and human brain evolution. General Anthropology, 15, 1–5.

    Article  Google Scholar 

  • Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society of London B, 366, 1050–1059.

    Article  Google Scholar 

  • Suge, R., & Okanoya, K. (2009). Perceptual chunking in the self-produced songs of Bengalese finches (Lonchura striata var. domestica). Animal Cognition, 13(3), 515–523.

    Article  PubMed  Google Scholar 

  • Suzuki, R., Buck, J. R., & Tyack, P. L. (2006). Information entropy of humpback whale songs. The Journal of the Acoustical Society of America, 119(3), 1849–1866.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    Article  PubMed  Google Scholar 

  • Wada, H., Sekino, M., Ohsaki, H., Hisatsune, T., Ikehira, H., & Kiyoshi, T. (2010). Prospect of high-field MRI. IEEE Transactions on Applied Superconductivity, 20(3), 115–122.

    Article  Google Scholar 

  • Wernicke, C. (1874). Der aphasiche Symptomenkomplex. Eine psychologische Studie auf anayomischer Basis. Breslau: Cohn & Weigert.

    Google Scholar 

  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701–702.

    Article  PubMed  Google Scholar 

  • Zhang, K. & Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5621–5626.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zilles, K., Dabringhaus, A., Geyer, S., Amunts, K., Qü, M., Schleicher, A., Gilissen, E., Schlaug, G., & Steinmetz, H. (1996). Neuroscience Biobehavioral Reviews, 20(4), 593–605.

    Article  PubMed  Google Scholar 

  • Zuberbühler, K., Cheney, D. L., & Seyfarth, R. M. (1999). Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology, 113(1), 33–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hillert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hillert, D. (2014). The Rise of Cognition. In: The Nature of Language. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0609-3_4

Download citation

Publish with us

Policies and ethics