Skip to main content

Genetic Foundations

  • Chapter
  • First Online:
The Nature of Language
  • 1688 Accesses

Abstract

Significant progress has been made to relate specific aspects of the human genotype to the phenotype speech and/or language. However, our overview shows that we are only at the beginning of exploring the innate mechanisms underlying complex linguistic and cognitive behavior. Different genome projects on modern humans (including human variations), Neanderthals, and chimpanzees were completed. Based on behavioral data, we know that the FOXP2 transcription factor is a speech-related gene and alpha tectorin plays a role in hearing. Other genes such as ASPM and GLUD2 are associated with language, and GNPTAB and NAGPA with stuttering. Comparative studies as well as studies with members of the KE family indicate that FOXP2 regulates a whole set of gene(s) responsible for the development of speech-related (sub)cortical structures. The search for a genetic base of a symbolic acquisition algorithm (SAA), which enables young children to learn languages instinctively in a few years, continues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The FOXP2 gene of the El Sidrón 1253 and 1351c specimen shows the same mutations at positions A-911 and G-977 in exon 7 as in modern humans.

  2. 2.

    Tonal languages use tones (tonemes) to distinguish words or inflections (e.g., Bantu languages, Chinese, Vietnamese, Thai).

  3. 3.

    White matter connections can be better analyzed with DTI and fiber tractography than with standard MRI. The DT-MRI method measures in vivo and non-invasively the random motion (diffusion) of hydrogen atoms within water molecules (or other moieties) in all three dimensions. Water in tissues, which consist of a large number of fibers such as brain white matter, and DT-MRI renders in 3D complex information how water diffuses in tissues.

  4. 4.

    Damage to the basal ganglia can result in motor disorders such as Parkinson disease, Huntington disease, Tourette syndrome, obsessive-compulsive disorder. The caudate nucleus is located within the basal ganglia.

  5. 5.

    The European Magpie ( Pica pica) belongs to the crow family and is believed to be one of the most intelligent animals. Although the European Magpie has no neocortex, the nidopallium (a region of the avian brain responsible for executive and cognitive functions) has a relative size comparable to the neostriatum of the basal ganglia in humans, chimpanzees, and orangutans.

  6. 6.

    DNA microarrays measure expression levels of thousands of genes simultaneously. Most microarray systems measure different types of mRNA molecules in cells and thus indirectly measure the expression levels of the genes responsible for the synthesis of those mRNA molecules.

  7. 7.

    The approach of computational linguistics is, in contrast to mentalistic or cognitive linguistics, exclusively formalistic for the purpose of creating software applications independent of the question “how human cognition works.” This does not exclude the possibility that some formalism turns out to be a useful by-product for describing language and cognition in humans.

  8. 8.

    As for any species, there have to be innate restrictions with respect to cognitive behavior. We do not discuss at this point the scope of these restrictions whether biolinguistic approaches, for example, are too restrictive by considering only specific linguistic levels of descriptions such as syntax and/or semantics.

References

  • Büchel, C., & Watkins, K. E. (2010). Genetic susceptibility to persistent stuttering. The New England Journal of Medicine, 362(23), 2226–2227.

    Article  PubMed  Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge: MIT Press.

    Google Scholar 

  • Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P., Kejariwal, A., Todd, M. J., Tanenbaum, D. M., Civello, D., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X., White, T. J., Sninsky, J. J., Adams, M. D., & Cargill, M. (2003). Positive selection in the human genome inferred from human-chimp-mouse orthologous gene alignments. Cold Spring Harbor Symposium on Quantitative Biology, 68, 471–477.

    Article  Google Scholar 

  • Cook, P., & Wilson, M. (2010). Do young chimpanzees have extraordinary working memory? Psychonomic Bulletin & Review, 17(4), 599–600.

    Article  Google Scholar 

  • Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and microcephalin. Proceedings of the National Academy of Science, 104(26), 10944–10949.

    Article  Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., Monaco, A. P., & Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–872.

    Article  PubMed  Google Scholar 

  • Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S. M., Blass, T., Somel, M., Brückner, M. K., Schreiweis, C., Winter, C., Sohr, R., Becker, L., Wiebe, V., Nickel, B., Giger, T., Müller, U., Groszer, M., Adler, T., Aguilar, A., Bolle, I., Calzada-Wack, J., Dalke, C., Ehrhardt, N., Favor, J., Fuchs, H., Gailus-Durner, V., Hans, W., Hölzlwimmer, G., Javaheri, A., Kalaydjiev, S., Kallnik, M., Kling, E., Kunder, S., Mossbrugger, I., Naton, B., Racz, I., Rathkolb, B., Rozman, J., Schrewe, A., Busch, D. H., Graw, J., Ivandic, B., Klingenspor, M., Klopstock, T., Ollert, M., Quintanilla-Martinez, L., Schulz, H., Wolf, E., Wurst, W., Zimmer, A., Fisher, S. E., Morgenstern, R., Arendt, T., de Angelis, M. H., Fischer, J., Schwarz, J., & Pääbo, S. (2009). A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell, 137(5), 961–971.

    Article  PubMed  Google Scholar 

  • Fisher, S. E., Lai, C. S. L., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26(1), 57–80.

    Article  PubMed  Google Scholar 

  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18(3), 298.

    Article  Google Scholar 

  • Fitch, W. T. (2006). Production of vocalizations in mammals. In K. Brown (Ed.), Encyclopedia of language and linguistics (pp. 115–121). Oxford: Elsevier.

    Google Scholar 

  • Gopnik, M. (1990). Genetic basis of grammar defect. Nature, 347(6288), 26.

    Article  PubMed  Google Scholar 

  • Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine & Child Neurology, 32(4), 352–355.

    Article  Google Scholar 

  • Inoue, S., & Matsuzawa, T. (2007). Working memory of numerals in chimpanzees. Current Biology, 17(23), R1004-R1005.

    Article  PubMed  Google Scholar 

  • Kang, C., Riazuddin, S., Mundorff, J., Krasnewich, D., Friedman, P., Mullikin, J. C., & Drayna, D. (2010). Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. The New England Journal of Medicine, 362(8), 677–685.

    Article  PubMed Central  PubMed  Google Scholar 

  • Konopka, G., Bomar, J. M., Winden, K., Coppola, G., Jonsson, Z. O., Gao, F., Peng, S., Preuss, T. M., Wohlschlegel, J. A., & Geschwind, D. H. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462(7270), 213–217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J. J., Hänni, C., Fortea, J., de la Rasilla, M., Bertranpetit, J., Rosas, A., & Pääbo, S. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17(21), 1908–1912.

    Article  PubMed  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Article  PubMed  Google Scholar 

  • Lieberman, P. (2009). FOXP2 and human cognition. Cell, 137(5), 800–802.

    Article  PubMed  Google Scholar 

  • Premack, D., & Premack, A. J. (1983). The mind of an ape. New York: Norton.

    Google Scholar 

  • Silberberg, A., & Kearns, D. (2009). Memory for the order of briefly presented numerals in humans as a function of practice. Animal Cognition, 12, 405–407.

    Article  PubMed  Google Scholar 

  • Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Science, 92(3), 930–933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hillert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hillert, D. (2014). Genetic Foundations. In: The Nature of Language. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0609-3_3

Download citation

Publish with us

Policies and ethics