Skip to main content

Antibody Microarrays for Cell-Based Assays: The Use of Micro-Arrayed Antibodies for Exploring Cell Surface Diversity or Whole Cell Functionality

  • Chapter
  • First Online:
Cell-Based Microarrays

Part of the book series: SpringerBriefs in Cell Biology ((SBCB))

  • 899 Accesses

Abstract

Since the early 1980s, microarrays have gained increasing interest due to their tremendous field of applications. A large repertoire of biomolecules has been micro-arrayed for the specific and parallelized detection of targets contained in a single biological sample. Most individual binding events target soluble compounds although pioneering microarray developments have been undertaken with whole cell binding on micro-arrayed glass slides. In this review, we wish to focus on micro-arrayed antibodies and their use for cell-based analysis. We will illustrate the wide range of applications that can be explored by site-specifically immobilizing eukaryotic or prokaryotic cells on a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

CCM:

Culture-capture-measure

CD:

Clusters of differentiation

CFU:

Colony forming units

CTC:

Circulating tumor cells

DNA:

Deoxynucleic acid

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence-assisted cell sorting

GNP:

Gold nanoparticles

HAART:

Highly active antiretroviral therapy

HIV:

Human immunodeficiency virus

ICS:

Intra-cellular cytokine staining

IFNγ:

Interferon gamma

IL:

Interleukin

IS:

Immunological synapses

MHC:

Major histocompatibility complex

mRNA:

Messenger ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

LOD:

Limit of detection

PBMC:

Peripheral blood mononuclear cell

PCR:

Polymerase chain reaction

PDMS:

Polydimethylsiloxane

RLS:

Resonant light scattering

SECM:

Scanning electrochemical microscopy

SLE:

Systemic lupus erythematosus

SNP:

Single nucleotide polymorphisms

SPR:

Surface plasmon resonance

STEC:

Shiga toxin-producing E. coli

TCR:

T cell receptor

TNFα:

Tumor necrosis factor

References

  1. Jin C et al (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44

    Article  PubMed  CAS  Google Scholar 

  2. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  PubMed  CAS  Google Scholar 

  3. Grant SF, Hakonarson H (2008) Microarray technology and applications in the arena of genome-wide association. Clin Chem 54(7):1116–1124

    Article  PubMed  CAS  Google Scholar 

  4. Zhu H, Qian J (2012) Applications of functional protein microarrays in basic and clinical research. Adv Genet 79:123–155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Foong YM, Fu J, Yao SQ, Uttamchandani M (2012) Current advances in peptide and small molecule microarray technologies. Curr Opin Chem Biol 16(1–2):234–242

    Article  PubMed  CAS  Google Scholar 

  6. Oyelaran O, Gildersleeve JC (2009) Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 13(4):406–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  PubMed  CAS  Google Scholar 

  8. Fodor SP et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995):767–773

    Article  PubMed  CAS  Google Scholar 

  9. Ekins R, Chu F, Biggart E (1989) Development of microspot multi-analytite ratiometric immunoassay using dual fluorescent-labelled antibodies. Anal Chim Acta 227:73–96

    Article  CAS  Google Scholar 

  10. Weller MG (2003) Classification of protein microarrays and related techniques. Anal Bioanal Chem 375(1):15–17

    PubMed  CAS  Google Scholar 

  11. Ekins R, Chu F, Biggart E (1990) Fluorescence spectroscopy and its application to a new generation of high sensitivity, multi-microspot, multianalyte, immunoassay. Clin Chim Acta 194(1):91–114

    Article  PubMed  CAS  Google Scholar 

  12. Kodadek T (2001) Protein microarrays: prospects and problems. Chem Biol 8(2):105–115

    Article  PubMed  CAS  Google Scholar 

  13. Lynes MA (2005) Solid-phase immunoassays. Curr Protoc Toxicol Chapter 18:Unit18 17. Wiley

    Google Scholar 

  14. Dexlin-Mellby L et al (2011) Design of recombinant antibody microarrays for membrane protein profiling of cell lysates and tissue extracts. Proteomics 11(8):1550–1554

    Article  PubMed  CAS  Google Scholar 

  15. Chang TW (1983) Binding of cells to matrixes of distinct antibodies coated on solid surface. J Immunol Methods 65(1–2):217–223

    Article  PubMed  CAS  Google Scholar 

  16. Castel D, Pitaval A, Debily MA, Gidrol X (2006) Cell microarrays in drug discovery. Drug Discov Today 11(13–14):616–622

    Article  PubMed  CAS  Google Scholar 

  17. Chen DS, Davis MM (2006) Molecular and functional analysis using live cell microarrays. Curr Opin Chem Biol 10(1):28–34

    Article  PubMed  CAS  Google Scholar 

  18. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    Article  PubMed  CAS  Google Scholar 

  19. Utz PJ (2005) Protein arrays for studying blood cells and their secreted products. Immunol Rev 204:264–282

    Article  PubMed  CAS  Google Scholar 

  20. Kato K, Toda M, Iwata H (2007) Antibody arrays for quantitative immunophenotyping. Biomaterials 28(6):1289–1297

    Article  PubMed  CAS  Google Scholar 

  21. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Doh J, Irvine DJ, Cohen RE, Hammond PT (2004) Large area two-dimensional B cell arrays for sensing and cell-sorting applications. Biomacromolecules 5(3):822–827

    Article  PubMed  CAS  Google Scholar 

  23. Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5(1):30–37

    Article  PubMed  CAS  Google Scholar 

  24. Ko IK, Kato K, Iwata H (2005) Antibody microarray for correlating cell phenotype with surface marker. Biomaterials 26(6):687–696

    Article  PubMed  CAS  Google Scholar 

  25. Fujii Y, Anderson JM, Matsuda T (2008) Antibody-bound cell microarray for immunophenotyping: surface modification and lymphocyte subpopulations. J Biomed Mater Res B Appl Biomater 87(2):525–537

    Article  PubMed  Google Scholar 

  26. Suraniti E et al (2007) Real-time detection of lymphocytes binding on an antibody chip using SPR imaging. Lab Chip 7(9):1206–1208

    Article  PubMed  CAS  Google Scholar 

  27. Zhu H et al (2008) A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8(12):2197–2205

    Article  PubMed  CAS  Google Scholar 

  28. Ellmark P et al (2008) Phenotypic protein profiling of different B cell sub-populations using antibody CD-microarrays. Cancer Lett 265(1):98–106

    Article  PubMed  CAS  Google Scholar 

  29. Anonymous (2010) Response to questions posed by the food safety and inspection service regarding determination of the most appropriate technologies for the food safety and inspection service to adopt in performing routine and baseline microbiological analyses. J Food Prot 73(6):1160–1200

    Google Scholar 

  30. Gehring AG, Albin DM, Reed SA, Tu SI, Brewster JD (2008) An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391(2):497–506

    Article  PubMed  CAS  Google Scholar 

  31. Gehring A et al (2013) A high-throughput antibody-based microarray typing platform. Sensors (Basel) 13(5):5737–5748

    Article  CAS  Google Scholar 

  32. Hegde NV, Praul C, Gehring A, Fratamico P, Debroy C (2013) Rapid O serogroup identification of the six clinically relevant Shiga toxin-producing Escherichia coli by antibody microarray. J Microbiol Methods 93(3):273–276

    Article  PubMed  CAS  Google Scholar 

  33. Park IH et al (2007) Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 45(4):1225–1233

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Marimon JM et al (2010) Antibody microarray typing, a novel technique for Streptococcus pneumoniae serotyping. J Microbiol Methods 80(3):274–280

    Article  PubMed  CAS  Google Scholar 

  35. Gao J, Liu C, Liu D, Wang Z, Dong S (2010) Antibody microarray-based strategies for detection of bacteria by lectin-conjugated gold nanoparticle probes. Talanta 81(4–5): 1816–1820

    Article  PubMed  CAS  Google Scholar 

  36. Bombera R, Leroy L, Livache T, Roupioz Y (2012) DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosens Bioelectron 33(1):10–16

    Article  PubMed  CAS  Google Scholar 

  37. Dudak FC, Boyaci IH (2009) Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J 4(7):1003–1011

    Article  PubMed  CAS  Google Scholar 

  38. Milgram S et al (2011) On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin. Biosens Bioelectron 26(5):2728–2732

    Article  PubMed  CAS  Google Scholar 

  39. Bouguelia S et al (2013) On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip 13(20):4024–4032

    Article  PubMed  CAS  Google Scholar 

  40. Parro V et al (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11(10):969–996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Rivas LA et al (2008) A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal Chem 80(21):7970–7979

    Article  PubMed  CAS  Google Scholar 

  42. de Diego-Castilla G et al (2011) Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies. Astrobiology 11(8):759–773

    Article  PubMed  Google Scholar 

  43. Parro V et al (2011) SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11(1):15–28

    Article  PubMed  CAS  Google Scholar 

  44. Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 61(11):4483–4489

    PubMed  CAS  Google Scholar 

  45. Barber N et al (2009) Profiling CD antigens on leukaemias with an antibody microarray. FEBS Lett 583(11):1785–1791

    Article  PubMed  CAS  Google Scholar 

  46. Lin MW, Ho JW, Harrison LC, dos Remedios CG, Adelstein S (2013) An antibody-based leukocyte-capture microarray for the diagnosis of systemic lupus erythematosus. PLoS One 8(3):e58199

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kaufman KL et al (2010) An extended antibody microarray for surface profiling metastatic melanoma. J Immunol Methods 358(1–2):23–34

    Article  PubMed  CAS  Google Scholar 

  48. Rahman W et al (2012) Analysis of human liver disease using a cluster of differentiation (CD) antibody microarray. Liver Int 32(10):1527–1534

    Article  PubMed  Google Scholar 

  49. Liu AY (2000) Differential expression of cell surface molecules in prostate cancer cells. Cancer Res 60(13):3429–3434

    PubMed  CAS  Google Scholar 

  50. Wu JQ et al (2007) Antibody microarray analysis of cell surface antigens on CD4+ and CD8+ T cells from HIV + individuals correlates with disease stages. Retrovirology 4:83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Wu JQ et al (2008) Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV + individuals on highly active antiretroviral therapy. Retrovirology 5:24

    Article  PubMed Central  PubMed  Google Scholar 

  52. Sutandy FX, Qian J, Chen CS, & Zhu H (2013) Overview of protein microarrays. Current protocols in protein science/editorial board, John E. Coligan … [et al.] Chapter 27: Unit 27 21. Wiley

    Google Scholar 

  53. Wilson DS, Nock S (2002) Functional protein microarrays. Curr Opin Chem Biol 6(1):81–85

    Article  PubMed  CAS  Google Scholar 

  54. Bienvenu J, Monneret G, Fabien N, Revillard JP (2000) The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med 38(4):267–285

    Article  PubMed  CAS  Google Scholar 

  55. Hernandez-Fuentes MP, Warrens AN, Lechler RI (2003) Immunologic monitoring. Immunol Rev 196:247–264

    Article  PubMed  CAS  Google Scholar 

  56. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF (2013) How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med 19(7):822–824

    Article  PubMed  CAS  Google Scholar 

  57. Bromage E, Stephens R, Hassoun L (2009) The third dimension of ELISPOTs: quantifying antibody secretion from individual plasma cells. J Immunol Methods 346(1–2):75–79

    Article  PubMed  CAS  Google Scholar 

  58. Cox JH, Ferrari G, Janetzki S (2006) Measurement of cytokine release at the single cell level using the ELISPOT assay. Methods 38(4):274–282

    Article  PubMed  CAS  Google Scholar 

  59. Brattig NW et al (2005) Relevance of ex vivo blood lymphocyte assay for in vivo lymphocyte function. Clin Exp Immunol 139(1):127–131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Gonzalez LC (2012) Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods 57(4):448–458

    Article  PubMed  CAS  Google Scholar 

  61. Kasai S et al (2005) Real-time monitoring of reactive oxygen species production during differentiation of human monocytic cell lines (THP-1). Anal Chim Acta 549(1–2):14–19

    Article  CAS  Google Scholar 

  62. Jones CN et al (2008) Multifunctional protein microarrays for cultivation of cells and immunodetection of secreted cellular products. Anal Chem 80(16):6351–6357

    Article  PubMed  CAS  Google Scholar 

  63. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129(7):1959–1967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO (2003) Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol 1(3):E65

    Article  PubMed Central  PubMed  Google Scholar 

  65. Chen DS et al (2005) Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2(10):e265

    Article  PubMed Central  PubMed  Google Scholar 

  66. Stybayeva G, Kairova M, Ramanculov E, Simonian AL, Revzin A (2010) Detecting interferon-gamma release from human CD4 T-cells using surface plasmon resonance. Colloids Surf B Biointerfaces 80(2):251–255

    Article  PubMed  CAS  Google Scholar 

  67. Shen K, Thomas VK, Dustin ML, Kam LC (2008) Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci U S A 105(22):7791–7796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–49

    Article  PubMed  CAS  Google Scholar 

  69. Niepel M, Spencer SL, Sorger PK (2009) Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr Opin Chem Biol 13(5–6):556–561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC (2010) Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10(11):1391–1400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Lu Y et al (2013) High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal Chem 85(4):2548–2556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Situma C, Hashimoto M, Soper SA (2006) Merging microfluidics with microarray-based bioassays. Biomol Eng 23(5):213–231

    PubMed  CAS  Google Scholar 

  73. Ma C et al (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Shi Q et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109(2):419–424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Baird GS (2010) Where are all the aptamers? Am J Clin Pathol 134(4):529–531

    Article  PubMed  Google Scholar 

  76. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Roupioz Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Ella Palmer

About this chapter

Cite this chapter

Roupioz, Y. (2014). Antibody Microarrays for Cell-Based Assays: The Use of Micro-Arrayed Antibodies for Exploring Cell Surface Diversity or Whole Cell Functionality. In: Cell-Based Microarrays. SpringerBriefs in Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0594-2_3

Download citation

Publish with us

Policies and ethics