Skip to main content

Review of siRNA/shRNA Applications in Cell-Based Microarrays

  • Chapter
  • First Online:
Book cover Cell-Based Microarrays

Part of the book series: SpringerBriefs in Cell Biology ((SBCB))

Abstract

This chapter reviews the development and the application of siRNA cell-based microarrays. Starting from reverse transfection as a common ground, siRNA cell-based microarrays quickly evolved into assays of very different formats, and now range from arrays containing chemically synthesized siRNA to viral arrays encoding short hairpin RNA (shRNA), which gives rise to siRNA upon cell transduction. They encompass arrays printed onto microscopic slides as well as arrays in 384-well plates, with microwell chips as a speciality format in between. In order to reflect this variety of technical and biological solutions, representatives of each format are discussed, highlighting the particular features and the steps taken towards optimization of the siRNA/shRNA transfer efficiency. The chapter concludes with a brief discussion of the general limitations of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Aminopropylsilane

CDK2:

Cyclin-dependent kinase 2

cDNA:

Complementary DNA

dsDNA:

Double-stranded DNA

ECM:

Extracellular matrix

eGFP:

Enhanced green fluorescent protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

hCAR:

Human coxsackievirus and adenovirus receptor

hMSCs:

Human mesenchymal stem cells

HUVEC:

Human umbilical vein endothelial cells

INCENP:

Inner centromere protein

MAP2:

Microtubule-associated protein 2

mCAT-1:

Murine cationic amino acid receptor 1

MOI:

Multiplicity of infection

MoMuLV:

Moloney’s murine leukemia virus

MSCV:

Murine stem cell virus

mTOR:

Mammalian target of Rapamycin

MVP:

Major vault protein

nts:

Nucleotides

PKR:

Protein kinase R

PLK1:

Polo-like kinase 1

PLL:

Poly-l-lysine

RFP:

Red fluorescent protein

RNAi:

RNA interference

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labelling

VSV-G:

Vesicular stomatitis virus glycoprotein

References

  1. Chang TW (1983) Binding of cells to matrixes of distinct antibodies coated on solid surface. J Immunol Methods 65(1–2):217–223

    Article  PubMed  CAS  Google Scholar 

  2. Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411(6833):107–110

    Article  PubMed  CAS  Google Scholar 

  3. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  PubMed  CAS  Google Scholar 

  4. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13(10):2341–2347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Kumar R, Conklin DS, Mittal V (2003) High-throughput selection of effective RNAi probes for gene silencing. Genome Res 13(10):2333–2340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Erfle H, Pepperkok R (2005) Arrays of transfected mammalian cells for high content screening microscopy. Methods Enzymol 404:1–8

    Article  PubMed  CAS  Google Scholar 

  7. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R (2007) Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2(2):392–399

    Article  PubMed  CAS  Google Scholar 

  8. Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J (2004) Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release 96(2):227–232

    Article  PubMed  CAS  Google Scholar 

  9. Uchimura E, Yamada S, Uebersax L, Yoshikawa T, Matsumoto K, Kishi M, Funeriu DP, Miyake M, Miyake J (2005) On-chip transfection of PC12 cells based on the rational understanding of the role of ECM molecules: efficient, non-viral transfection of PC12 cells using collagen IV. Neurosci Lett 378(1):40–43

    Article  PubMed  CAS  Google Scholar 

  10. Uchimura E, Yamada S, Nomura T, Matsumoto K, Fujita S, Miyake M, Miyake J (2007) Reverse transfection using antibodies against a cell surface antigen in mammalian adherent cell lines. J Biosci Bioeng 104(2):152–155

    Article  PubMed  CAS  Google Scholar 

  11. Rantala JK, Mäkelä R, Aaltola AR, Laasola P, Mpindi JP, Nees M, Saviranta P, Kallioniemi O (2011) A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 12:162. doi:10.1186/1471-2164-12-162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fujita S, Ota E, Sasaki C, Takano K, Miyake M, Miyake J (2007) Highly efficient reverse transfection with siRNA in multiple wells of microtiter Plates. J Biosci Bioeng 104(4):329–333

    Article  PubMed  CAS  Google Scholar 

  13. Erfle H, Pepperkok R (2007) Production of siRNA- and cDNA-transfected cell arrays on noncoated chambered coverglass for high-content screening microscopy in living cells. Methods Mol Biol 360:155–161

    PubMed  CAS  Google Scholar 

  14. Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R (2008) Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell Plates. J Biomol Screen 13(7):575–580. doi:10.1177/1087057108320133

    Article  PubMed  CAS  Google Scholar 

  15. Henderson MC, Azorsa DO (2013) High-throughput RNAi screening for the identification of novel targets. Methods Mol Biol 986:89–95. doi:10.1007/978-1-62703-311-4_6

    Article  PubMed  CAS  Google Scholar 

  16. Fujita S, Takano K, Ota E, Sano T, Yoshikawa T, Miyake M, Miyake J (2010) New methods for reverse transfection with siRNA from a solid surface. Methods Mol Biol 623:197–209. doi:10.1007/978-1-60761-588-0_13

    Article  PubMed  CAS  Google Scholar 

  17. Chen PC, Huang YY, Juang JL (2011) MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays. Lab Chip 11(21):3619–3625. doi:10.1039/c0lc00696c

    Article  PubMed  CAS  Google Scholar 

  18. Scholz AK, Klebl BM, Morkel M, Lehrach H, Dahl A, Lange BM (2010) A flexible multiwell format for immunofluorescence screening microscopy of small-molecule inhibitors. Assay Drug Dev Technol 8(5):571–580. doi:10.1089/adt.2009.0260

    Article  PubMed  CAS  Google Scholar 

  19. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553

    Article  PubMed  CAS  Google Scholar 

  21. Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ (2004) RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A 101(17):6548–6552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Abbas-Terki T, Blanco-Bose W, Déglon N, Pralong W, Aebischer P (2002) Lentiviral-mediated RNA interference. Hum Gene Ther 13(18):2197–2201

    Article  PubMed  CAS  Google Scholar 

  23. Beer C, Andersen DS, Rojek A, Pedersen L (2005) Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol 79(16):10776–10787

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Carbone R, Giorgetti L, Zanardi A, Marangi I, Chierici E, Bongiorno G, Fiorentini F, Faretta M, Piseri P, Pelicci PG, Milani P (2007) Retroviral microarray-based platform on nanostructured TiO2 for functional genomics and drug discovery. Biomaterials 28(13):2244–2253

    Article  PubMed  CAS  Google Scholar 

  25. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Bailey SN, Ali SM, Carpenter AE, Higgins CO, Sabatini DM (2006) Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nat Methods 3(2):117–122

    Article  PubMed  CAS  Google Scholar 

  27. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124(6):1283–1298

    Article  PubMed  CAS  Google Scholar 

  28. Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6(Suppl 1):S164–S171

    Article  PubMed  CAS  Google Scholar 

  29. Ro S, Hwang SJ, Ordög T, Sanders KM (2005) Adenovirus-based short hairpin RNA vectors containing an EGFP marker and mouse U6, human H1, or human U6 promoter. Biotechniques 38(4):625–627

    Article  PubMed  CAS  Google Scholar 

  30. Zhao LJ, Jian H, Zhu H (2003) Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene 316:137–141

    Article  PubMed  CAS  Google Scholar 

  31. Michiels F, van Es H, van Rompaey L, Merchiers P, Francken B, Pittois K, van der Schueren J, Brys R, Vandersmissen J, Beirinckx F, Herman S, Dokic K, Klaassen H, Narinx E, Hagers A, Laenen W, Piest I, Pavliska H, Rombout Y, Langemeijer E, Ma L, Schipper C, Raeymaeker MD, Schweicher S, Jans M, van Beeck K, Tsang IR, van de Stolpe O, Tomme P, Arts GJ, Donker J (2002) Arrayed adenoviral expression libraries for functional screening. Nat Biotechnol 20(11):1154–1157

    Article  PubMed  CAS  Google Scholar 

  32. Oehmig A, Klotzbücher A, Thomas M, Weise F, Hagner U, Brundiers R, Waldherr D, Lingnau A, Knappik A, Kubbutat MH, Joos TO, Volkmer H (2008) A novel reverse transduction adenoviral array for the functional analysis of shRNA libraries. BMC Genomics 9:441. doi:10.1186/1471-2164-9-441

    Article  PubMed Central  PubMed  Google Scholar 

  33. Volkmer H, Weise F (2011) Cell-based microarrays of infectious adenovirus encoding short hairpin RNA (shRNA). Methods Mol Biol 706:97–106. doi:10.1007/978-1-61737-970-3_8

    Article  PubMed  CAS  Google Scholar 

  34. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32(Web Server issue):W135–W141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F (2004) siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 32(Web Server issue):W130–W134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL, Lich JD, Ting JP, Reed W (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol 6:7

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sen G, Wehrman TS, Myers JW, Blau HM (2004) Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet 36(2):183–189

    Article  PubMed  CAS  Google Scholar 

  38. Luo B, Heard AD, Lodish HF (2004) Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci U S A 101(15):5494–5499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K (2004) Enzymatic production of RNAi libraries from cDNAs. Nat Genet 36(2):190–196

    Article  PubMed  CAS  Google Scholar 

  40. Dinh A, Mo YY (2005) Alternative approach to generate shRNA from cDNA. Biotechniques 38(4):629–632

    Article  PubMed  CAS  Google Scholar 

  41. Du C, Ge B, Liu Z, Fu K, Chan WC, McKeithan TW (2006) PCR-based generation of shRNA libraries from cDNAs. BMC Biotechnol 6:28

    Article  PubMed Central  PubMed  Google Scholar 

  42. Xu L, Li J, Liu L, Lu L, Gao J, Li X (2007) Construction of equalized short hairpin RNA library from human brain cDNA. J Biotechnol 128(3):477–485

    Article  PubMed  CAS  Google Scholar 

  43. Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32(3):e37

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhao HF, L'Abbé D, Jolicoeur N, Wu M, Li Z, Yu Z, Shen SH (2005) High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion. Nat Methods 2(12):967–973

    Article  PubMed  CAS  Google Scholar 

  45. Shalek AK, Gaublomme JT, Wang L, Yosef N, Chevrier N, Andersen MS, Robinson JT, Pochet N, Neuberg D, Gertner RS, Amit I, Brown JR, Hacohen N, Regev A, Wu CJ, Park H (2012) Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett 12(12):6498–6504. doi:10.1021/nl3042917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn DR, Yoon MH, Sutton A, Jorgolli M, Gertner RS, Gujral TS, MacBeath G, Yang EG, Park H (2010) Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci U S A 107(5):1870–1875. doi:10.1073/pnas.0909350107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Reymann J, Beil N, Beneke J, Kaletta PP, Burkert K, Erfle H (2009) Next-generation 9216-microwell cell arrays for high-content screening microscopy. Biotechniques 47(4):877–878. doi:10.2144/000113251

    PubMed  Google Scholar 

  48. Henderson MC, Gonzales IM, Arora S, Choudhary A, Trent JM, Von Hoff DD, Mousses S, Azorsa DO (2011) High-throughput RNAi screening identifies a role for TNK1 in growth and survival of pancreatic cancer cells. Mol Cancer Res 9(6):724–732. doi:10.1158/1541-7786.MCR-10-0436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43. doi:10.1186/1479-5876-7-43

    Article  PubMed Central  PubMed  Google Scholar 

  50. Krichevsky AM, Kosik KS (2002) RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci U S A 99(18):11926–11929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Weise .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Ella Palmer

About this chapter

Cite this chapter

Weise, F. (2014). Review of siRNA/shRNA Applications in Cell-Based Microarrays. In: Cell-Based Microarrays. SpringerBriefs in Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0594-2_2

Download citation

Publish with us

Policies and ethics