Skip to main content

Empirical φ-Divergence Minimizers for Hadamard Differentiable Functionals

  • Conference paper
  • First Online:
Topics in Nonparametric Statistics

Abstract

We study some extensions of the empirical likelihood method, when the Kullback distance is replaced by some general convex divergence or φ-discrepancy. We show that this generalized empirical likelihood method is asymptotically valid for general Hadamard differentiable functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This research was partially developed within the MME-DII Center of Excellence (ANR-11-LABX-0023-01).

  2. 2.

    The first author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under grant ANR-13-BS-01-0005 (project SPADRO).

References

  1. Baggerly, K.A.: Empirical likelihood as a goodness-of-fit measure. Biometrika 85, 535–547 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertail, P.: Empirical likelihood in some semi-parametric models. Bernoulli 12, 299–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertail, P., Gautherat, E., Harari-Kermadec, H.: Exponential bounds for quasi-empirical likelihood. Working Paper n34, CREST. http://www.crest.fr/images/doctravail//2005-34.pdf (2005). Cited 12 Dec 2012

  4. Bertail, P., Harari-Kermadec, H., Ravaille, D.: φ-divergence empirique et vraisemblance empirique généralisée. Annales d’Économie et de Statistique 85, 131–158 (2007)

    Google Scholar 

  5. Bertail, P., Gautherat, E., Harari-Kermadec, H.: Exponential bounds for multivariate self-normalized sums. Electron. Commun. Probab. 13, 628–640 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borwein, J.M., Lewis, A.S.: Duality relationships for entropy like minimization problem. SIAM J. Optim. 29, 325–338 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Broniatowski, M., Keziou, A.: Minimization of φ-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43(4), 403–442 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Broniatowski, M., Keziou, A.: Parametric estimation and tests through divergences and the duality technique. J. Multivariate Anal. 100(1), 16–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corcoran, S.: Bartlett adjustment of empirical discrepancy statistics. Biometrika, 85, 967–972 (1998)

    Article  MATH  Google Scholar 

  10. Csiszár, I.: On topology properties of f-divergences. Studia Sci. Math. Hungar. 2, 329–339 (1967)

    MATH  MathSciNet  Google Scholar 

  11. Dudley, R.M.: A Course on Empirical Processes. Ecole d’été de probabilité de Saint Flour. Lecture Notes in Mathematics, vol. 1097, pp. 2–241. Springer, New York (1984)

    Google Scholar 

  12. Gamboa, F., Gassiat, E.: Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Stat. 25, 328–350 (1996)

    MathSciNet  Google Scholar 

  13. Gill, R.D.: Non- and semiparametric maximum likelihood estimators and the von Mises method. Scand. J. Stat. 16, 97–128 (1989)

    MATH  Google Scholar 

  14. Grendar, M., Judge, G.: Empty set problem of maximum empirical likelihood methods, Electron. J. Stat. 3, 1542–1555 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hall, P., La Scala, B.: Methodology and algorithms of empirical likelihood. Int. Stat. Rev. 58, 109–127 (1990)

    Article  MATH  Google Scholar 

  16. Léonard, C.: Convex conjugates of integral functionals. Acta Mathematica Hungarica. 93, 253–280 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leonard, C.: Minimizers of energy functionals. Acta Math. Hungar. 93, 281–325 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig (1987)

    MATH  Google Scholar 

  19. Newey, W.K., Smith, R.J.: Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica, 72, 219–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Owen, A.B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika. 75 (2), 237–249 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Owen, A.B.: Empirical likelihood ratio confidence regions. Ann. Stat. 18, 90–120 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Owen, A.B.: Empirical Likelihood. Chapman and Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  23. Pan, X.R., Zhou, M.: Empirical likelihood in terms of cumulative hazard function for censored data. J. Multivariate Anal. 80, 166–188 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pons, O., Turckheim, E.: Von Mises method, Bootstrap and Hadamard differentiability. Statistics 22, 205–214 (1991)

    Google Scholar 

  25. Pons, O., Turckheim E.: Tests of independence for bivariate censored data based on the empirical joint hazard function. Scand. J. Stat. 18(1), 21–37 (1991)

    MATH  Google Scholar 

  26. Qin, J., Lawless, J.: Empirical likelihood and general estimating equations. Ann. Stat. 22, 300–325 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rockafeller, R.: Integrals which are convex functionals. Pacific J. Math. 24, 525–339 (1968)

    Article  MathSciNet  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  29. van der Vaart, A.W.: Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  30. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Process: With Applications to Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Bertail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Bertail, P., Gautherat, E., Harari-Kermadec, H. (2014). Empirical φ-Divergence Minimizers for Hadamard Differentiable Functionals. In: Akritas, M., Lahiri, S., Politis, D. (eds) Topics in Nonparametric Statistics. Springer Proceedings in Mathematics & Statistics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0569-0_3

Download citation

Publish with us

Policies and ethics