Skip to main content

An Open Problem on Strongly Consistent Learning of the Best Prediction for Gaussian Processes

  • Conference paper
  • First Online:
Topics in Nonparametric Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 74))

Abstract

For Gaussian process, we present an open problem whether or not there is a data driven predictor of the conditional expectation of the current value given the past such that the difference between the predictor and the conditional expectation tends to zero almost surely for all stationary, ergodic, Gaussian processes. We show some related negative and positive findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Algoet, P.: The strong law of large numbers for sequential decisions under uncertainty. IEEE Trans. Inf. Theory 40, 609–634 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alquier, P., Wintenberger, O.: Model selection for weakly dependent time series forecasting. Bernoulli 18, 883–913 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bailey, D.H.: Sequential schemes for classifying and predicting ergodic processes. PhD thesis, Stanford University (1976)

    Google Scholar 

  4. Bierens, H.J.: The Wold decomposition. Manuscript (2012). http://econ.la.psu.edu/~hbierens/WOLD.PDF

  5. Bleakley, K., Biau, G., Györfi, L., Ottucs, G.: Nonparametric sequential prediction of time series. J. Nonparametr. Stat. 22, 297–317 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brockwell, P., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Google Scholar 

  7. Buldygin, V.V., Donchenko, V.S.: The convergence to zero of Gaussian sequences. Matematicheskie Zametki 21, 531–538 (1977)

    MATH  MathSciNet  Google Scholar 

  8. Cornfeld, I., Fomin, S., Sinai, Y.G.: Ergodic Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  9. Doob, J.L.: The elementary Gaussian processes. Ann. Math. Stat. 15, 229–282 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feller, W. An Introduction to Probability and Its Applications, vol. 1. Wiley, New York (1957)

    MATH  Google Scholar 

  11. Gerencsér, L.: AR() estimation and nonparametric stochastic complexity. IEEE Trans. Inf. Theory 38, 1768–1779 (1992)

    Article  MATH  Google Scholar 

  12. Gerencsér, L.: On Rissanen’s predictive stochastic complexity for stationary ARMA processes. J. Stat. Plan. Inference 41, 303–325 (1994)

    Article  MATH  Google Scholar 

  13. Gerencsér, L., Rissanen, J.: A prediction bound for Gaussian ARMA processes. In: Proc. of the 25th Conference on Decision and Control, pp. 1487–1490 (1986)

    Google Scholar 

  14. Grenander, U.: Stochastic processes and statistical inference. Arkiv Math. 1, 195–277 (1950)

    Article  MathSciNet  Google Scholar 

  15. Györfi, L.: Adaptive linear procedures under general conditions. IEEE Trans. Inf. Theory 30, 262–267 (1984)

    Article  Google Scholar 

  16. Györfi, L. and Lugosi, G.: Strategies for sequential prediction of stationary time series. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modelling Uncertainty: An Examination of its Theory, Methods and Applications, pp. 225–248. Kluwer, Boston (2001)

    Google Scholar 

  17. Györfi, L., Morvai, G., Yakowitz, S.: Limits to consistent on-line forecasting for ergodic time series. IEEE Trans. Inf. Theory 44, 886–892 (1998)

    Article  MATH  Google Scholar 

  18. Györfi, L., Ottucsák, G.: Sequential prediction of unbounded time series. IEEE Trans. Inf. Theory 53, 1866–1872 (2007)

    Article  Google Scholar 

  19. Inoue, A.: AR and MA representations of partial autocorrelation functions, with applications. Probab. Theory Relat. Fields 140, 523–551 (2008)

    Article  MATH  Google Scholar 

  20. Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–39 (1918)

    Article  Google Scholar 

  21. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Academic Press, New York (1975)

    MATH  Google Scholar 

  22. Klimo, L.A. Nelson, P.I.: On conditional least squares estimation for stochastic processes. Ann. Stat. 6, 629–642 (1978)

    Article  Google Scholar 

  23. Lindgren, G.: Lectures on Stationary Stochastic Processes. Lund University (2002). http://www.maths.lu.se/matstat/staff/georg/Publications/lecture2002.pdf

  24. Maruyama, G.: The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyusyu Univ. A4, 45–106 (1949)

    MathSciNet  Google Scholar 

  25. McDonald, D.J., Shalizi, C.R., Schervish, M.: Generalization error bounds for stationary autoregressive models (2012). http://arxiv.org/abs/1103.0942

  26. Meir, R.: Nonparametric time series prediction through adaptive model selection. Mach. Learn. 39, 5–34 (2000)

    Article  MATH  Google Scholar 

  27. Ninness, B.: Strong laws of large numbers under weak assumptions with application. IEEE Trans. Autom. Control 45, 2117–2122 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and Analysis. Lecture Notes in Mathematics, vol. 1206, pp. 167–241. Springer, New York (1986)

    Google Scholar 

  29. Ryabko, B.Y.: Prediction of random sequences and universal coding. Probl. Inf. Transm. 24, 87–96 (1988)

    MATH  MathSciNet  Google Scholar 

  30. Schäfer, D.: Strongly consistent online forecasting of centered Gaussian processes. IEEE Trans. Inf. Theory 48, 791–799 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Union and the European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Györfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Györfi, L., Sancetta, A. (2014). An Open Problem on Strongly Consistent Learning of the Best Prediction for Gaussian Processes. In: Akritas, M., Lahiri, S., Politis, D. (eds) Topics in Nonparametric Statistics. Springer Proceedings in Mathematics & Statistics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0569-0_12

Download citation

Publish with us

Policies and ethics