Skip to main content

Fundamentals of NVM Physics and Computing

  • Chapter
  • First Online:
Design Exploration of Emerging Nano-scale Non-volatile Memory
  • 1290 Accesses

Abstract

The bistable states are the foundation of all memory devices to store data. For conventional memory devices, the bistable states are represented by voltage levels and the transition is described by the charging and discharging of the capacitors. The transition dynamics is critical in order to obtain important figures of merit such as device operation speed and energy. Therefore, it is of great importance to quantitatively understand the physical mechanism and transition dynamics of the emerging nonvolatile devices, whose states are represented by nonelectrical variables. For the magnetoresistive random-access memory family, including toggled MRAM, STT-MRAM, and racetrack memory, the magnetization dynamics is the fundamental physics behind, while for the resistive random-access memory category, including memristor and CBRAM, the ion migration effect is the shared physics. In this chapter, both the magnetization dynamics and ion migration dynamics are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beach G, Tsoi M, Erskine J (2008) Current-induced domain wall motion. J Magn Magn Mater 320(7):1272–1281

    Article  Google Scholar 

  2. Berger L (1978) Low-field magnetoresistance and domain drag in ferromagnets. J Appl Phys 49(3):2156–2161

    Article  Google Scholar 

  3. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54(13):9353

    Article  Google Scholar 

  4. Cabrera N, Mott N (1949) Theory of the oxidation of metals. Rep Progress Phys 12(1):163

    Article  Google Scholar 

  5. Dignam M (1968) Ion transport in solids under conditions which include large electric fields. J Phys Chem Solids 29(2):249–260

    Article  Google Scholar 

  6. Hanyu T, Teranishi K, Kameyama M (1998) Multiple-valued logic-in-memory vlsi based on a floating-gate-mos pass-transistor network. In: Solid-state circuits conference, 1998. Digest of technical papers, 1998 IEEE International. IEEE, New York, pp 194–195

    Google Scholar 

  7. Katine J, Albert F, Buhrman R, Myers E, Ralph D (2000) Current-driven magnetization reversal and spin-wave excitations in co/cu/co pillars. Phys Rev Lett 84(14):3149

    Article  Google Scholar 

  8. Kautz WH (1969) Cellular logic-in-memory arrays. IEEE Trans Comp 100(8):719–727

    Article  Google Scholar 

  9. Kimura H, Hanyu T, Kameyama M, Fujimori Y, Nakamura T, Takasu H (2004) Complementary ferroelectric-capacitor logic for low-power logic-in-memory vlsi. Solid State Circ IEEE J 39(6):919–926

    Article  Google Scholar 

  10. Li Z, Zhang S (2004) Domain-wall dynamics and spin-wave excitations with spin-transfer torques. Phys Rev Lett 92(20):207–203

    Google Scholar 

  11. Matsunaga S, Hayakawa J, Ikeda S, Miura K, Hasegawa H, Endoh T, Ohno H, Hanyu T (2008) Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl Phys Expr 1(9):1301

    Google Scholar 

  12. Matsunaga S, Hayakawa J, Ikeda S, Miura K, Endoh T, Ohno H, Hanyu T (2009) Mtj-based nonvolatile logic-in-memory circuit, future prospects and issues. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, Leuven, pp 433–435

    Google Scholar 

  13. Mott NF, Gurney RW (1964) Electronic processes in ionic crystals. Dover, New York

    Google Scholar 

  14. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159(1):L1–L7

    Article  Google Scholar 

  15. Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl Phys A 94(3):515–519

    Article  Google Scholar 

  16. Sun J (1999) Current-driven magnetic switching in manganite trilayer junctions. J Magn Magn Mater 202(1):157–162

    Article  Google Scholar 

  17. Sun J (2000) Spin-current interaction with a monodomain magnetic body: a model study. Phys Rev B 62(1):570

    Article  Google Scholar 

  18. Tatara G, Kohno H (2004) Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys Rev Lett 92(8):086–601

    Article  Google Scholar 

  19. Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. EPL (Europhys Lett) 69(6):990

    Article  Google Scholar 

  20. Tsoi M, Jansen A, Bass J, Chiang WC, Seck M, Tsoi V, Wyder P (1998) Excitation of a magnetic multilayer by an electric current. Phys Rev Lett 80(19):4281

    Article  Google Scholar 

  21. Yu S, Wong HS (2011) Compact modeling of conducting-bridge random-access memory (cbram). Electron Dev IEEE Trans 58(5):1352–1360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, H., Wang, Y. (2014). Fundamentals of NVM Physics and Computing. In: Design Exploration of Emerging Nano-scale Non-volatile Memory. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0551-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0551-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0550-8

  • Online ISBN: 978-1-4939-0551-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics