Skip to main content

Pathways to Decarbonization of Energy

  • Chapter
  • First Online:
Liberating Energy from Carbon: Introduction to Decarbonization

Part of the book series: Lecture Notes in Energy ((LNEN,volume 22))

  • 1632 Accesses

Abstract

History of industrial civilization is history of the progression of primary fuel substitution: wood → coal → oil → gas. This evolutionary trend of reducing carbon intensity of primary energy is referred to as decarbonization. During these historical transitions, human society moved to more convenient, efficient, and clean energy sources that enabled new technological advances in industry, transportation, and other areas. However, during the last couple of decades, this positive decarbonizing trend dramatically slowed down and practically ceased. In this chapter, the current trends in carbon intensity of global economy and prospective decarbonization options are analyzed using Kaya Identity (KI) modeling tool. The KI analysis indicates that the cessation of decarbonization of global economy can be largely attributed to a reversal of the evolutionary fuel substitution trend and “detour” to coal by populous rapidly developing countries. Dramatic reductions in both energy and carbon intensities of world economy would be necessary to stop and reverse this worrisome trend. Among proposed carbon mitigation policies, improvements in energy efficiency promise the largest near-term dividends and are central to achieving atmospheric CO2 stabilization goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grübler A, Nakićenović N (1996) Decarbonizing the global energy system. Technol Forecast Soc Change 53:97–110

    Article  Google Scholar 

  2. Nakićenović N (1996) Freeing energy from carbon. Daedalus 125:95–112

    Google Scholar 

  3. Aguilera R, Aguilera R (2009) Global possibilities of future methane and hydrogen economies. J Pet Technol June:34–39

    Google Scholar 

  4. International Energy Agency (2011) CO2 emissions from fuel combustion. IEA report. 2011 ed. Paris, France

    Google Scholar 

  5. International Energy Agency (2012) Global carbon-dioxide emissions increase by 1.0Gt in 2011 to record high. http://iea.org/newsroomandevents/news/2012/may/name,27216,en.html. Accessed 15 Jun 2012

  6. Olivier J, Janssens-Maenhaut G, Peters J, Wilson J (2011) Long-term trend in global CO2 emissions. European Commission’s Joint Research Center, PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands

    Google Scholar 

  7. Raupach M, Marland G, Ciais P et al (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 104:10288–10293

    Article  Google Scholar 

  8. Pielke R Jr (2010) The climate fix. Basic Books, New York

    Google Scholar 

  9. Pielke R, Wigley T, Green C (2008) Nature 452:531–532

    Article  Google Scholar 

  10. Yamaji K, Matsuhashi R, Nagata Y, Kaya Y (1991) An integrated system for CO2/Energy/GNP analysis: case studies on economic measures for CO2 reduction in Japan. Workshop on CO2 reduction and removal: measures for the next century. Intern. Inst. Applied Systems Analysis, Laxenburg, Austria, 19 Mar 1991

    Google Scholar 

  11. Hoffert M, Caldeira K, Jain A et al (1998) Energy implications of future stabilization of atmospheric CO2 content. Nature 395:881–884

    Article  Google Scholar 

  12. International Energy Agency (2012) CO2 emissions from fuel combustion 2012. http://www.iea.org/publications/freepublications/publication/name,4010,en.html. Accessed 12 Mar 2013

  13. International Energy Agency (2013) Tracking clean energy progress 2013. IEA input to the Clean Energy Ministireal, IEA, Paris. www.iea.org/publications/TCEP_web.pdf. Accessed 10 Jul 2013

  14. Carbon Capture Journal (2013) IEA-progress towards clean energy stalled. 17 Apr 2013. http://www.carboncapturejournal.com/displaynews.php?newsid=1125&phpsessid=18dkjsha7qaa6s815mlrslvtq4. Accessed 15 Jun 2013

  15. International Energy Agency (2012) Energy technology perspectives. Pathways to a clean energy system. IEA/OECD, Paris, France

    Google Scholar 

  16. Johnson J (2012) The new Saudi Arabia. Chem Eng News 90:30–31

    Google Scholar 

  17. International Energy Agency (2012) World Energy Outlook. OECD/IEA. Paris, France. http://www.iea.org/publications/freepublications/publication/English.pdf. Accessed 25 Jan 2013

  18. Cohen K (2010) Our most powerful energy solution? Efficiency. ExxonMobil. http://www.exxonmobilperspectives.com/2010/11/29/our-most-powerful-energy-solution- efficiency/. Accessed 20 Oct 2011

  19. Lovins A (2009) Profitable climate solutions: correcting the sign error. Energy Environ Sci 2:15–18

    Article  Google Scholar 

  20. European Commission (2011) Strong impetus to energy savings and energy efficiency. http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/770. Accessed 12 Dec 2011

  21. Jiao L, Stone R (2011) China looks to balance its carbon books. Science 334:886–887

    Article  Google Scholar 

  22. Lovins A (2005) More profit with less carbon. Scient Am September:74–83

    Article  Google Scholar 

  23. Black R (2011) China “won’t follow US” on carbon emissions. BBC News. 25 Oct 2011. http://www.bbc.co.uk/news/science-environment-15444858. Accessed 8 Nov 2011

  24. Mueller C (2013) Improving energy efficiency with CHP. Distributed Energy January/February:48–50

    Google Scholar 

  25. International Energy Agency (2011) World energy outlook 2011. France, Paris. ISBN 978-92-64-12413-4

    Google Scholar 

  26. Ausubel J, Marchetti C (1997) Elektron: electrical systems in retrospect and prospect. In: Ausubel J, Lanhford D (eds) Technological trajectories and the human environment. National Academy Press, Washington, DC, pp 110–134

    Google Scholar 

  27. Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167:250–257

    Article  Google Scholar 

  28. Saito H, Hasegawa S, Ihara M (2008) Effective anode thickness in rechargeable direct carbon fuel cells using fuel charged by methane. J Electrochem Soc 155:B443–B447

    Article  Google Scholar 

  29. Cherepy N, Krueger R, Fiet K et al (2005) Direct conversion of carbon fuel in a molten carbonate fuel cell. J Electrochem Soc 152:A80–A87

    Article  Google Scholar 

  30. Jain S, Lakerman J, Pointon K, Irvine J (2007) Carbon content in a direct carbon fuel cell. ECS Trans 7:829–836

    Article  Google Scholar 

  31. Steinberg M, Cooper J, Cherepy N (2002) Proc. AIChE 2002 spring meeting, New Orleans. pp. 2112–2127

    Google Scholar 

  32. Patel S (2012) Major developments for solid oxide fuel cells. Power, 1 Aug 2012. http://www.powermag.com/renewables/wind/Major-Developments-for-Solid-Oxide-Fuel-Cells_4801_p2.html. Accessed 21 Jan 2013

  33. Fuel Cell Today (2012) PNNL Develops new, high-efficiency solid oxide fuel cell system for community power. 1 Jun 2012. http://www.fuelcelltoday.com/news-events/news-archive/2012/june/pnnl-develops-new,-high-efficiency-solid-oxide-fuel-cell-system-for-community-power. Accessed 10 Oct 2012

  34. Pehnt M, Ramesohl S (2003) Fuel cells for distributed power: benefits, barriers and perspectives. IFEU, Wuppertal Institut. WWF and FCEu report on fuel cells for stationary power-2003.pdf

    Google Scholar 

  35. Jansen D, Dijkstra J (2003) CO2 capture in SOFC-GT systems. Second annual conf. carbon sequestration, Alexandria, VA, USA

    Google Scholar 

  36. International Energy Agency (2002) Transmission of CO2 and energy, IEA greenhouse gas R&D programme, report PH4/6. IEA Greenhouse gas R&D Programme, Cheltenham, UK

    Google Scholar 

  37. The Hydrogen Journal (2010) Plan for UK generating plant using coal gasification, CCS, hydrogen and fuel cells production. 14 Oct 2010. http://www.h2journal.com/displaynews.php?newsid=525. Accessed 2 Feb 2012

  38. Brouwer J (2006) Hybrid gas turbine fuel cell systems, chapter 4. In: Dennis RA (ed) The gas turbine handbook. U.S. Department of Energy, Morgantown, West Virginia, DOE/NETL-2006/1230

    Google Scholar 

  39. Brouwer J (2003) Hybrid gas turbine fuel cell systems, DOE, NETL, Coal Power Technologies. pp. 127–162. www.netl.doe.gov/technologies/coalpower/turbines/refshelf/handbook/1.4pdf.

  40. Kobayashi Y, Ando Y, Kabata T et al (2011) Extremely high-efficiency thermal power system-solid oxide fuel cell (SOFC) Triple combined-cycle system, Mitsubishi Heavy Industries Technical Review 48:9–15. http://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf. Accessed 18 Jan 2012

  41. Bloomfield D (1976) Pressurized fuel cell power plant with single reactant gas stream. US Patent 3,976,507

    Google Scholar 

  42. Net: Developers’ Journal (2012) MHI to develop fuel cell triple combined cycle power generation system. http://dotnet.sys-con.com/node/2288456. Accessed 10 Dec 2012

  43. Kvamsdal H, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24

    Article  Google Scholar 

  44. United Nations Development Programme (2004) World energy assessment: energy and the challenge of sustainability. UNDP, New York, 2004

    Google Scholar 

  45. Goswami Y, Kreith F (2007) Global energy system. In: Kreith F, Goswami Y (eds) Handbook of energy efficiency and renewable energy, chapter 1. CRC, Boca Raton, FL, pp 1–24

    Google Scholar 

  46. Kemsley J (2011) Metals recycling falls short. Chem Eng News 89:9

    Google Scholar 

  47. Bomgardner M (2011) Taking it back. Chem Eng News 89:13–17

    Google Scholar 

  48. United Nations (2011) UN Environment program’s international resource panel report “recycling rates of metals: a status report. unep.org/resourcepanel/publications/recyclingratesofmetals/tabid/56073/default.aspx. Accessed 20 Dec 2012

    Google Scholar 

  49. Powell E (2012) Earth, wind and water. Discover 11:50–53

    Google Scholar 

  50. Harvey D (2010) Energy and the new reality. Energy efficiency and the demand for energy services. Earthscan, London

    Google Scholar 

  51. Jacobson M (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  Google Scholar 

  52. Moriarty P, Honnery D (2011) Rise and fall of the carbon civilisation. Springer, London, UK

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muradov, N. (2014). Pathways to Decarbonization of Energy. In: Liberating Energy from Carbon: Introduction to Decarbonization. Lecture Notes in Energy, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0545-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0545-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0544-7

  • Online ISBN: 978-1-4939-0545-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics