Skip to main content

Part of the book series: Lecture Notes in Energy ((LNEN,volume 22))

  • 1561 Accesses

Abstract

Considering that the concentration of CO2 in the atmosphere is extremely low: only 400 ppm or 0.04 vol.%, it is surprising how much impact this gas exerts on life on our planet. What is so unique about CO2? In this chapter, Greenhouse effect, radiative forcing, global warming potential, global carbon cycle, and other phenomena that control the livability of our planet are linked to unique optical and physicochemical properties of CO2. An increasing body of scientific evidence suggests that humans are affecting the Earth’s radiative and carbon balances mainly through increased emissions of greenhouse gases originating from industrial activities, land-use change, deforestation, and other practices that became prevalent during the rapid industrial development of the last two and half centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ppm stands for “part per million”; hereafter ppm relates to volume units (unless otherwise indicated), e.g., 1 ppm = 0.0001 vol%.

  2. 2.

    In this book, the amount of CO2 may be presented in the units of carbon (C) or CO2. For example, 1 GtC is equivalent of 3.66 GtCO2.

References

  1. National Energy Technology Laboratory (2006) Carbon sequestration technology roadmap and program plan. US DOE Office of Fossil Energy, Washington, DC

    Google Scholar 

  2. Trenberth K, Fasullo J, Kiehl J (2008) Earth’s global energy budget. Bull Am Meteorol Soc. doi:10.1175/2008BAMS2634.1

    Google Scholar 

  3. Kreith F (2000) The CRC handbook of thermal engineering. CRC, New York. ISBN 3540663495

    MATH  Google Scholar 

  4. Goody R (1964) Atmospheric radiation: I. Theoretical basis. Clarendon, Oxford, UK, p 436

    Google Scholar 

  5. Okabe H (1978) Photochemistry of small molecules. Wiley, New York

    Google Scholar 

  6. U.N. Intergovernmental Panel on Climate Change (2007) 4th assessment report climate change 2007. The physical science basis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Myhre G, Highwood E, Keith P et al (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  Google Scholar 

  8. Kerr R (2013) Soot is warming the world even more than thought. Science 339:382

    Article  Google Scholar 

  9. Andreae M, Ramanathan V (2013) Climate’s dark forcings. Science 340:280–281

    Article  Google Scholar 

  10. Amunden B, Lie E (2013) The Research Council of Norway. Global warming less extreme than feared? http://www.forskningsradet.no/en/Newsarticle/Global_warming_less_extreme_than_feared/125398344535/p1177315753918?WT.ac = forside_nyhet. Accessed 10 May 2013

  11. Intergovernmental Panel on Climate Change (1990) Scientific assessment. In: Houghton J et al (eds) Climate change. Cambridge Univ. Press, Cambridge, UK, p 364

    Google Scholar 

  12. Intergovernmental Panel on Climate Change (2005) In: Metz B et al (eds.) Special report on safeguarding the ozone layer and the global climate system: issues related to fluorohydrocarbons and perfluorocarbons. Cambridge University Press, Cambridge. p. 488

    Google Scholar 

  13. Landau E (2013) CO2 levels hit new peak at key observatory. CNN http://edition.cnn.com/2013/05/10/us/climate-change/index.html?hpt = hp_t4. Accessed 1 June 2013

  14. CO2 Now (2013) Atmospheric CO2 for May 2013. http://co2now.org/. Accessed 2 Jun 2013

  15. U.N. Intergovernmental Panel on Climate Change (2013) Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis. Summary for policymakers. http://www.climatechange2013.org./images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf. Accessed 27 Sep 2013

  16. Kiehl J, Trenberth K (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–208

    Article  Google Scholar 

  17. Evans K (2005) The greenhouse effect and climate change. The environment: a revolution in attitudes. Thomson Gale, Detroit. ISBN 0-7876-9082-1

    Google Scholar 

  18. Sausen R, Isaksen I, Grewe V et al (2005) Aviation radiative forcing in 2000: an update on IPCC (1999). Meteorol Z 114:555–561

    Article  Google Scholar 

  19. Held I, Soden B (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  20. Solomon S, Rosenlof K, Portmann R et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  21. Bondre N (2012) Methane: not a damp squib, not yet a time bomb. Global Change 79:12–15

    Google Scholar 

  22. Bohannon H (2008) Weighing the climate risks of an untapped fossil fuel. Science 319:1753

    Article  Google Scholar 

  23. Krey V, Canadell J, Nakicenovic N et al (2009) Gas hydrates: entrance to a methane age or climate threat? Environ Res Lett 4:034007. doi:10.1088/1748-9326/4/3/034007

    Article  Google Scholar 

  24. Mascarelli A (2009) A sleeping giant? Nature reports. Clim Change 3:46–49

    Google Scholar 

  25. Archer D, Buffett B, Brovkin V et al (2008) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci U S A 106:20956–20601. doi:10.1073/pnas.0800885105

    Google Scholar 

  26. Shindell D, Faluvegi G, Koch D et al (2009) Improved attribution of climate forcing to emissions. Science 326:716–718

    Article  Google Scholar 

  27. Howarth R, Santoro R, Ingraffea A (2011) Methane and greenhouse gas footprint of natural gas from shale formations. Clim Change. doi:10.1007/s10584-011-0061-5

    MATH  Google Scholar 

  28. Shindell D, Kuylenstierna J, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    Article  Google Scholar 

  29. Hofzumahaus A, Lefer B, Monks P et al (2004) Photolysis frequency of O3 to O1D: measurements and modeling the IPMMI. J Geophys Res 109:D08S90. doi:1029/2003JD004333

    Google Scholar 

  30. Spahni R, Chapellaz J, Stocker T et al (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    Article  Google Scholar 

  31. Blasing T (2009) Recent greenhouse gas concentrations. Carbon dioxide information analysis center. Oak Ridge National Laboratory. updated December 2009. http://cdiac.ornl.gov/pns/current_ghg.html. Accessed 9 July 2010

  32. Intergovernmental Panel on Climate Change (2001) Climate change 2001: the scientific basis. Cambridge Univ. Press, New York

    Google Scholar 

  33. Heimann M (2010) How stable is the methane cycle? Science 327:1211–1212

    Article  Google Scholar 

  34. Keppler F, Hamilton J, Brass M et al (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  Google Scholar 

  35. Ruppel C, Noserale D (2012) Gas hydrates and climate warming—why a methane catastrophe is unlikely. USGS, Sound Waves, Volume FY 2012, Issue No. 140, May/June 2012. http://soundwaves.usgs.gov/2012/06/SW201206.pdf. Accessed 23 Aug 2012

  36. Wilson E (2011) Examining methane’s slowing increase. Chem Eng News 89:31

    Google Scholar 

  37. Wickland K, Striegl R, Neff J et al (2006) Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J Geophys Res 111, G02011. doi:10.1029/2005JG000099

    Google Scholar 

  38. Chapman S, Thurlow M (1996) The influence of climate on CO2 and CH4 emissions from organic soils. J Agric Forest Meteorol 79:205–217

    Article  Google Scholar 

  39. Shindel D, Walter B, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophys Res Lett 31, L21202. doi:10.1029/2004GL021009

    Article  Google Scholar 

  40. Ruppel C (2011) Methane hydrates and contemporary climate change. Nat Educ Knowledge 3:29 http://www.nature.com/scitable/knowledge/library/methane-hydrates-and-contemporary-climate-change-24314790. Accessed 10 Jan 2012

    Google Scholar 

  41. U.S. Department of Energy (2012) Methane hydrates R&D program. http://fossil.energy.gov/programs/oilgas/hydrates. Accessed 15 Sep 2012

  42. Buffet B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199

    Article  Google Scholar 

  43. Archer D (2005) The fate of fossil fuel CO2 in geologic time. J Geophys Res 110(C9):C09S05. doi:10.1029/2004JC002625

    Google Scholar 

  44. Behl R (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288:128–133

    Article  Google Scholar 

  45. Kennet J, Cannariato K, Hendy I et al (2003) Methane hydrates in quarternary climate change—the Clathrate gun hypothesis. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  46. Carey J (2012) Global warming: faster than expected? Scient Am November:51–55

    Google Scholar 

  47. Kump L (2011) The last great global warming. Scient Am. http://www.scientificamerican.com/article.cfm?id = the-last-great-global-warming. Accessed 20 Jul 2012

  48. Reeburgh W (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  Google Scholar 

  49. Hinrichs K, Boetius A (2002) The anerobic oxidation of methane: new insights in microbial ecology and biochemistry. In: Wefer F et al (eds) Ocean margin systems. Springer, Berlin, pp 457–477

    Chapter  Google Scholar 

  50. Mau S, David V, Clark J et al (2007) Dissolved methane distributions and air-sea flux in the plum of a massive seep field. Coal Oil Point, California. Geophys Res Lett 34, L22603. doi:10.1029/2005JC003183

    Article  Google Scholar 

  51. Liro C, Adams E, Herzog H (1992) Modeling the release of CO2 in the deep ocean. Energy Conver Manag 33:667–674

    Article  Google Scholar 

  52. Boswell R, Collett T (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215

    Article  Google Scholar 

  53. Walter A, Anthony P, Grosse G et al (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci 5:419–426. doi:10.1038/ngeo1480

    Article  Google Scholar 

  54. Shakhova N, Semiletov I, Salyuk A et al (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf (ESAS). Science 327:1246–1250

    Article  Google Scholar 

  55. United Nations Environment Programme (2012). Policy implications of warming permafrost. UNEP press release: thawing of permafrost expected to cause significant additional global warming, not yet accounted for in climate predictions. November 2012. http://www.unep.org/Documents.Multilingual/Default.Print.asp?DocumentID = 2698&ArticleID = 9338&l = en. Accessed 10 Jan 2013

  56. Hogue C (2012) Thawing permafrost throws off global warming forecasts, report says. Chem Eng News 90:9

    Google Scholar 

  57. Laanbroek H (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153

    Article  Google Scholar 

  58. Milne J, Field C (2012) Assessment report from the GCEP workshop on energy supply with negative carbon emissions. Stanford University. Global Climate and Energy Project. http://gcep.stanford.edu/pdfs/rfpp/Report%20from%20GCEP%20Workshop%20on%20Energy%20Supply%20with%20Negative%20Emissions.pdf. Accessed 12 Feb 2013

  59. US Environmental Protection Agency (2011) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011. US-GHG-Inventory-2011-Chapter-1-Introduction.pdf. Accessed 20 Jul 2012

    Google Scholar 

  60. Falkowski P, Scholes R, Boyle E et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296

    Article  Google Scholar 

  61. Canfield D, Kamp L (2013) Carbon cycle makeover. Science 339:533–534

    Article  Google Scholar 

  62. Turley C, Blackford J, Widdicombe S et al (2006) Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Schellnhuber H et al (eds) Avoiding dangerous climate change. Cambridge Univ. Press, Cambridge, UK, pp 347–353

    Google Scholar 

  63. Smith M, Vanderwel M, Lyutsarev V et al (2012) The climate dependence of the terrestrial carbon cycle; including parameter and structural uncertainties. Biogeosci Discuss 9:13439–13496. doi:10.5194/bgd-9-13439-2012

    Article  Google Scholar 

  64. Flower C, Lynch D, Gonzalez-Meler M (2012) Global climate change. Berkshire encyclopedia of sustainability, v. 5, Ecosystem, management and sustainability. pp. 162–167

    Google Scholar 

  65. Prentice I, Farquhar M, Fasham R et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton J et al (eds) Climate change 2001: the scientific basis. Contributions of working group I to the third assessment report of the intergovernmental panel on climate change. UK, Cambridge Univ. Press, Cambridge, pp 185–237

    Google Scholar 

  66. Brovkin V, Sitch S, Von Bloh W et al (2004) Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol 10:1253–1266

    Article  Google Scholar 

  67. Imbrie J, Imbrie K (1979) Ice ages: solving the mystery. Harvard University Press, Cambridge, MA

    Google Scholar 

  68. Imbrie J, Boyle E, Clemens S et al (1992) On the structure and origin of major glaciation cycles. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Article  Google Scholar 

  69. Lean J (2010) Cycle and trends in solar irradiance and climate. Wiley Interdiscip Rev Clim Change 1:111–122

    Article  Google Scholar 

  70. Graf H, Feichter J, Langmann B (1997) Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J Geophys Res 102:10727–10738

    Article  Google Scholar 

  71. Gerlach T (1991) Present-day CO2 emissions from volcanoes. Eos Trans Am Geophys Union 72:254–255

    Google Scholar 

  72. Vitousek P, Mooney H, Lubchenko J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  73. National Academy of Sciences (2011) Climate stabilization targets: emissions, concentrations and impacts over decades to millennia. The National Academic Press, Washington, DC

    Google Scholar 

  74. Kerr R (2012) Experts agree global warming is melting the world rapidly. Science 338:1138

    Article  Google Scholar 

  75. Phrampus B, Hornbach W (2012) Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490:527–530

    Article  Google Scholar 

  76. Lewis T (2013) Greenhouse gas may be flowing into ocean waters off US east coast. Science News. http://www.sciencenews.org/view/generic/id/346009/description/Gulf_stream_might_be_releasing_seafloor_methane. Accessed 12 Mar 2013

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muradov, N. (2014). What Is So Unique About CO2?. In: Liberating Energy from Carbon: Introduction to Decarbonization. Lecture Notes in Energy, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0545-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0545-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0544-7

  • Online ISBN: 978-1-4939-0545-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics