Skip to main content

The CKD Patient with Dyslipidemia

  • Chapter
  • First Online:
Dyslipidemias in Kidney Disease

Abstract

The prevalence of chronic kidney disease (CKD) is increasing alarmingly, mainly as a result of an ongoing epidemic of obesity, metabolic syndrome, and diabetes mellitus. CKD is a notorious risk multiplier for development of cardiovascular disease, which, itself, is well known to be the leading cause of morbidity and mortality in patients with CKD. Cardiovascular morbidity and mortality are significantly increased along the continuum of CKD, reaching a tenfold higher risk in end-stage renal disease population when compared to general population.

Lipid metabolism is profoundly disturbed in CKD, and there is a gradual shift to the uremic lipid profile as kidney function deteriorates, which is further modified by the presence of comorbidities as diabetes and obesity. Apart from quantitative differences, major qualitative changes in lipoproteins can be observed, such as oxidization and modification to small and dense low-density lipoproteins, which render the particles more atherogenic. These abnormalities contribute to the development of cardiovascular events, and they may worsen the progression of CKD.

In this chapter we will briefly discuss the peculiar quantitative and qualitative abnormalities observed in patients with CKD, from the early manifestations of disease to the more advanced phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appel G. Lipid abnormalities in renal disease. Kidney Int. 1991;39:169.

    Article  PubMed  CAS  Google Scholar 

  2. Sechi LA, Zingaro L, De Carli S, Sechi G, Catena C, Falleti E, et al. Increased serum lipoprotein(a) levels in patients with early renal failure. Ann Intern Med. 1998;129:457.

    Article  PubMed  CAS  Google Scholar 

  3. Kwan BC, Kronenberg F, Beddhu S, Cheung AK. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;18:1246.

    Article  PubMed  CAS  Google Scholar 

  4. Kronenberg F, Kuen E, Ritz E, Junker R, Konig P, Kraatz G, et al. Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol. 2000;11:105–15.

    PubMed  CAS  Google Scholar 

  5. Kronenberg F, Kuen E, Ritz E, Konig P, Kraatz G, Lhotta K, et al. Apolipoprotein A-IV serum concentrations are elevated in patients with mild and moderate renal failure. J Am Soc Nephrol. 2002;13:461–9.

    PubMed  CAS  Google Scholar 

  6. Krentz AJ. Lipoprotein abnormalities and their consequences for patients with type 2 diabetes. Diabetes Obes Metab. 2003;5 Suppl 1:S19–27.

    Article  PubMed  CAS  Google Scholar 

  7. Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Ren Nutr. 2005;15:195–203.

    Article  PubMed  Google Scholar 

  8. Moore R, Thomas D, Morgan E, Wheeler D, Griffin P, Salaman J, et al. Abnormal lipid and lipoprotein profiles following renal transplantation. Transplant Proc. 1993;25:1060.

    PubMed  CAS  Google Scholar 

  9. Dennis EA. Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A. 2009;106: 2089–90.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365: 1812–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Thompson A, Danesh J. Associations between apolipoprotein B, apolipoproteins AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of prospective studies. J Intern Med. 2006;259:481–92.

    Article  PubMed  CAS  Google Scholar 

  12. Benn M. Apolipoprotein B, levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review. Atherosclerosis. 2009;206:17–30.

    Article  PubMed  CAS  Google Scholar 

  13. Barter PJ, Ballantyne CM, Carmena R, Castro Cabezas M, Chapman BJ, Couture P, et al. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J Intern Med. 2006;259:247–8.

    Article  PubMed  CAS  Google Scholar 

  14. Sacks F. The apolipoproteins story. Atherosclerosis. 2006;7(Suppl):23–7.

    Article  PubMed  CAS  Google Scholar 

  15. Bobik A. Apolipoprotein C-III and atherosclerosis. Circulation. 2008;118:702–4.

    Article  PubMed  Google Scholar 

  16. Eisenberg S, Bilheimer DW, Levy RI, Lindgren FT. On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein. Biochim Biophys Acta. 1973;326:361–77.

    Article  PubMed  CAS  Google Scholar 

  17. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–61.

    Article  PubMed  CAS  Google Scholar 

  18. Abrass CK. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol. 2004;24:46–53.

    Article  PubMed  CAS  Google Scholar 

  19. Kaysen GA. New insights into lipid metabolism in chronic kidney disease. J Ren Nutr. 2011;21:120–3.

    Article  PubMed  CAS  Google Scholar 

  20. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290:F262–72.

    Article  PubMed  CAS  Google Scholar 

  21. Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial Int. 2006;10:1–7.

    Article  PubMed  Google Scholar 

  22. Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res. 2009;153:77–85.

    Article  PubMed  CAS  Google Scholar 

  23. Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 2009;76: 437–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Weiner DE, Sarnak MJ. Managing dyslipidemia in chronic kidney disease. J Gen Intern Med. 2004;19:1045.

    Article  PubMed Central  PubMed  Google Scholar 

  25. de Boer IH, Astor BC, Kramer H, Palmas W, Seliger SL, Shlipak MG, et al. Lipoprotein abnormalities associated with mild impairment of kidney function in the multi-ethnic study of atherosclerosis. Clin J Am Soc Nephrol. 2008;3:125–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Samuelsson O, Attman PO, Knight-Gibson C, Kron B, Larsson R, Mulec H, et al. Lipoprotein abnormalities without hyperlipidaemia in moderate renal insufficiency. Nephrol Dial Transplant. 1994;9:1580–5.

    PubMed  CAS  Google Scholar 

  27. Attman PO, Samuelsson O, Alaupovic P. The effect of decreasing renal function on lipoprotein profiles. Nephrol Dial Transplant. 2011;26:2572–5.

    Article  PubMed  CAS  Google Scholar 

  28. Chan MK, Varghese Z, Persaud JW, Baillod RA, Moorhead JF. Hyperlipidemia in patients on maintenance hemo- and peritoneal dialysis: the relative pathogenetic roles of triglyceride production and triglyceride removal. Clin Nephrol. 1983;17:183–90.

    Google Scholar 

  29. Cramp DG, Tickner TR, Beale DJ, Moorhead JF, Wills MR. Plasma triglyceride secretion and metabolism in chronic renal failure. Clin Chim Acta. 1977;76:237–41.

    Article  PubMed  CAS  Google Scholar 

  30. Verschoor L, Lammers R, Birkenhager JC. Triglyceride turnover in severe chronic non-nephrotic renal failure. Metabolism. 1978;27:879–83.

    Article  PubMed  CAS  Google Scholar 

  31. Bagdade JD, Yee E, Wilson D, Shafrir E. Hyperlipidemia in renal failure: studies of plasma lipoproteins, hepatic triglyceride production, and tissue lipoprotein lipase in a chronically uremic rat model. J Lab Clin Med. 1978;91:176–86.

    PubMed  CAS  Google Scholar 

  32. Gregg RC, Diamond A, Mondon CE, Reaven GM. The effects of chronic uremia and dexamethasone on triglyceride kinetics in the rat. Metabolism. 1977;26:875–82.

    Article  PubMed  CAS  Google Scholar 

  33. Korczynska J, Stelmanska E, Nogalska A, Szolkiewicz M, Goyke E, Swierczynski J, et al. Upregulation of lipogenic enzymes genes expression in white adipose tissue of rats with chronic renal failure is associated with higher level of sterol regulatory element binding protein-1. Metabolism. 2004;53:1060–5.

    Article  PubMed  CAS  Google Scholar 

  34. Rutkowski B, Szolkiewicz M, Korczynska J, Sucajtys E, Stelmanska E, Nieweglowski T, et al. The role of lipogenesis in the development of uremic hyperlipidemia. Am J Kidney Dis. 2003;41:S84–8.

    Article  PubMed  CAS  Google Scholar 

  35. Szolkiewicz M, Nieweglowski T, Korczynska J, Sucajtys E, Stelmanska E, Goyke E, et al. Upregulation of fatty acid synthase gene expression in experimental chronic renal failure. Metabolism. 2002;51:1605–10.

    Article  PubMed  CAS  Google Scholar 

  36. Weinstock PH, Levak-Frank S, Hudgins LC, Radner H, Friedman JM, Zechner R, et al. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc Natl Acad Sci U S A. 1997;94:10261–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Vaziri ND, Dang B, Zhan CD, Liang K. Downregulation of hepatic acyl-CoA: diglycerol acyltransferase (DGAT) in chronic renal failure. Am J Physiol Renal Physiol. 2004;287:F90–4.

    Article  PubMed  CAS  Google Scholar 

  38. Vaziri ND, Kim CH, Phan D, Kim S, Liang K. Upregulation of acyl-CoA: diacylglycerol acyltransferase (DGAT) expression in nephrotic syndrome. Kidney Int. 2004;66:262–7.

    Article  PubMed  CAS  Google Scholar 

  39. Sentí M, Romero R, Pedro-Botet J, Pelegrí A, Nogués X, Rubiés-Prat J. Lipoprotein abnormalities in hyperlipidemic and normolipidemic men on hemodialysis with chronic renal failure. Kidney Int. 1992;41:1394–9.

    Article  PubMed  Google Scholar 

  40. Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21:573.

    PubMed  CAS  Google Scholar 

  41. Arnadottir M, Thysell H, Dallongeville J, Fruchart JC, Nilsson-Ehle P. Evidence that reduced lipoprotein lipase activity is not a primary pathogenetic factor for hypertriglyceridemia in renal failure. Kidney Int. 1995;48:779.

    Article  PubMed  CAS  Google Scholar 

  42. Kaysen GA. Lipid and lipoprotein metabolism in chronic kidney disease. J Ren Nutr. 2009;19:73–7.

    Article  PubMed  CAS  Google Scholar 

  43. Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31:189–96.

    Article  PubMed  CAS  Google Scholar 

  44. Cheung AK, Parker CJ, Ren K, Iverius PH. Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma. Kidney Int. 1996;49:1360.

    Article  PubMed  CAS  Google Scholar 

  45. Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996;50:1928–35.

    Article  PubMed  CAS  Google Scholar 

  46. Lacour B, Roullet JB, Liagre AM, Jorgetti V, Beyne P, Dubost C, et al. Serum lipoprotein disturbances in primary and secondary hyperparathyroidism and effects of parathyroidectomy. Am J Kidney Dis. 1986;8:422.

    PubMed  CAS  Google Scholar 

  47. Liang K, Oveisi F, Vaziri ND. Role of secondary hyperparathyroidism in the genesis of hypertriglyceridemia and VLDL receptor deficiency in chronic renal failure. Kidney Int. 1998;53:626–30.

    Article  PubMed  CAS  Google Scholar 

  48. Akmal M, Perkins S, Kasim SE, Oh HY, Smogorzewski M, Massry SG. Verapamil prevents chronic renal failure-induced abnormalities in lipid metabolism. Am J Kidney Dis. 1993;22:158.

    PubMed  CAS  Google Scholar 

  49. Klin M, Smogorzewski M, Ni Z, Zhang G, Massry SG. Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone. J Clin Invest. 1996;97:2167–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Kim C, Vaziri ND. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67:1028–32.

    Article  PubMed  CAS  Google Scholar 

  51. Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51:913–9.

    Article  PubMed  CAS  Google Scholar 

  52. Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo AI expression in chronic renal failure. Nephrol Dial Transplant. 1999;14:1462–6.

    Article  PubMed  CAS  Google Scholar 

  53. Guarnieri GF, Moracchiello M, Campanacci L, Ursini F, Ferri L, Valente M, et al. Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int Suppl. 1978;13: S26–30.

    Google Scholar 

  54. McLeod R, Reeve CE, Frohlich J. Plasma lipoproteins and lecithin: cholesterol acyltransferase distribution in patients on dialysis. Kidney Int. 1984;25:683–8.

    Article  PubMed  CAS  Google Scholar 

  55. Shoji T, Nishizawa Y, Nishitani H, Billheimer JT, Sturley SL. Impaired metabolism of high density lipoprotein in uremic patients. Kidney Int. 1992;41:1653–61.

    Article  PubMed  CAS  Google Scholar 

  56. Liang K, Kim C, Vaziri ND. HMG-CoA reductase inhibition reverses LCAT and LDL receptor deficiencies and improves HDL in rats with chronic renal failure. Am J Physiol Renal Physiol. 2005;288:F539–44.

    Article  PubMed  CAS  Google Scholar 

  57. Vaziri ND, Liang K, Parks JS. Downregulation of lecithin: cholesterol acyltransferase (LCAT) in chronic renal failure. Kidney Int. 2001;59:2192–6.

    Article  PubMed  CAS  Google Scholar 

  58. Vaziri ND, Sato T, Liang K. Molecular mechanism of altered cholesterol metabolism in focal glomerulosclerosis. Kidney Int. 2003;63:1756–63.

    Article  PubMed  CAS  Google Scholar 

  59. Liang K, Vaziri ND. Downregulation of hepatic high-density lipoprotein receptor, SR-B1 in nephrotic syndrome. Kidney Int. 1999;56:621–6.

    Article  PubMed  CAS  Google Scholar 

  60. Liang K, Vaziri ND. Upregulation of acyl-CoA: cholesterol acyltransferase in chronic renal failure. Am J Physiol Endocrinol Metab. 2002;283:E676–81.

    PubMed  CAS  Google Scholar 

  61. Vaziri ND, Liang K. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Am J Physiol Renal Physiol. 2004;287:F1038–43.

    Article  PubMed  CAS  Google Scholar 

  62. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/anti-inflammatory properties of high density lipoprotein distinguish patients from control subjects better than high density lipoprotein cholesterol levels and are favourably affected by simvastatin treatment. Circulation. 2003;108:2751–6.

    Article  PubMed  CAS  Google Scholar 

  63. Van Lenten BJ, Reddy ST, Navab M, Fogelman AM. Understanding changes in high density lipoproteins during the acute phase response. Arterioscler Thromb Vasc Biol. 2006;26:1687–8.

    Article  PubMed  CAS  Google Scholar 

  64. Meier P, Golshayan D, Blanc E, Pascual M, Burnier M. Oxidized LDL modulates apoptosis of regulatory T cells in patients with ESRD. J Am Soc Nephrol. 2009;20:1368–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Kimura H, Miyazaki R, Imura T, Masunaga S, Suzuki S, Gejyo F, et al. Hepatic lipase mutation may reduce vascular disease prevalence in haemodialysis patients with high CETP levels. Kidney Int. 2003;64:1829–37.

    Article  PubMed  CAS  Google Scholar 

  66. De Sain-van der Velden MG, Rabelink TJ, Reijngoud DJ, Gadellaa MM, Voorbij HA, Stellaard F, et al. Plasma α2 macroglobulin is increased in nephrotic patients as a result of increased synthesis alone. Kidney Int. 1998;54:530–5.

    Article  Google Scholar 

  67. Liang K, Vaziri ND. Gene expression of LDL receptor, HMG-CoA reductase, and cholesterol-7 alpha-hydroxylase in chronic renal failure. Nephrol Dial Transplant. 1997;12:1381–6.

    Article  PubMed  CAS  Google Scholar 

  68. Pandak WM, Vlahcevic ZR, Heuman DM, Krieg RJ, Hanna JD, Chan JC. Post transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7α-hydroxylase in rats with subtotal nephrectomy. Kidney Int. 1994;46:358–64.

    Article  PubMed  CAS  Google Scholar 

  69. Attman PO, Alaupovic P. Lipid and apolipoprotein profiles of uremic dyslipoproteinemia—relation to renal function and dialysis. Nephron. 1991;57:401–10.

    Article  PubMed  CAS  Google Scholar 

  70. Hörkkö S, Huttunen K, Korhonen T, Kesäniemi YA. Decreased clearance of low-density lipoprotein in patients with chronic renal failure. Kidney Int. 1994;45:561–70.

    Article  PubMed  Google Scholar 

  71. Kastarinen H, Hörkkö S, Kauma H, Karjalainen A, Savolainen MJ, Kesäniemi YA. Low-density lipoprotein clearance in patients with chronic renal failure. Nephrol Dial Transplant. 2009;24:2131–5.

    Article  PubMed  CAS  Google Scholar 

  72. Shapiro RJ. Catabolism of low-density lipoprotein is altered in experimental chronic renal failure. Metabolism. 1993;42:162–9.

    Article  PubMed  CAS  Google Scholar 

  73. Hörkkö S, Huttunen K, Kervinen K, Kesäniemi YA. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur J Clin Invest. 1994;24:105–13.

    Article  PubMed  Google Scholar 

  74. Rajman I, Harper L, McPake D, Kendall MJ, Wheeler DC. Low density lipoprotein subfraction profiles in chronic renal failure. Nephrol Dial Transplant. 1998;13:2281–7.

    Article  PubMed  CAS  Google Scholar 

  75. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation. Am J Kidney Dis. 2000;35:852–62.

    Article  PubMed  CAS  Google Scholar 

  76. Oi K, Hirano T, Sakai S, Kawaguchi Y, Hosoya T. Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. Kidney Int Suppl. 1999;71:S227–8.

    Article  PubMed  CAS  Google Scholar 

  77. Craig WY, Neveux LM, Palomaki GE, Cleveland MM, Haddow JE. Lipoprotein(a) as a risk factor for ischemic heart disease: metaanalysis of prospective studies. Clin Chem. 1998;44:2301–6.

    PubMed  CAS  Google Scholar 

  78. Dieplinger H, Kronenberg F. Genetics and metabolism of lipoprotein(a) and their clinical implications (Part 1). Wien Klin Wochenschr. 1999;111:5–20.

    PubMed  CAS  Google Scholar 

  79. Milionis HJ, Elisaf MS, Tselepis A, Bairaktari E, Karabina SA, Siamopoulos KC. Apolipoprotein(a) phenotypes and lipoprotein(a) concentrations in patients with renal failure. Am J Kidney Dis. 1999;33:1100–6.

    Article  PubMed  CAS  Google Scholar 

  80. Tsimihodimos V, Mitrogianni Z, Elisaf M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc Med J. 2011;5:41–8.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Utermann G, Menzel HJ, Kraft HG, Duba HC, Kemmler HG, Seitz C. Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma. J Clin Invest. 1987;80:458–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Kronenberg F, Neyer U, Lhotta K, Trenkwalder E, Auinger M, Pribasnig A, et al. The low molecular weight apo(a) phenotype is an independent predictor for coronary artery disease in hemodialysis patients: a prospective follow-up. J Am Soc Nephrol. 1999;10:1027–36.

    PubMed  CAS  Google Scholar 

  83. Longenecker JC, Klag MJ, Marcovina SM, Powe NR, Fink NE, Giaculli F, et al. Small apolipoprotein(a) size predicts mortality in end-stage renal disease: the CHOICE study. Circulation. 2002;106:2812–8.

    Article  PubMed  CAS  Google Scholar 

  84. Green PHR, Glickman RM, Riley JW, Qinet E. Human apolipoprotein A-IV. Intestinal origin and distribution in plasma. J Clin Invest. 1980;65:911–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Stein O, Stein Y, Lefevre M, Roheim PS. The role of apolipoprotein A-IV in reverse cholesterol transport studied with cultured cells and liposomes derived from another analogue of phosphatidylcholine. Biochim Biophys Acta. 1986;878:7–13.

    Article  PubMed  CAS  Google Scholar 

  86. Steinmetz A, Utermann G. Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV. J Biol Chem. 1985;260:2258–64.

    PubMed  CAS  Google Scholar 

  87. Chen CH, Albers JJ. Activation of lecithin: cholesterol acyltransferase by apolipoproteins E-2, E-3 and A-IV isolated from human plasma. Biochim Biophys Acta. 1985;836:279–85.

    Article  PubMed  CAS  Google Scholar 

  88. Guyard-Dangremont V, Lagrost L, Gambert P. Comparative effects of purified apolipoproteins A-I, A-II, and A-IV on cholesteryl ester transfer protein activity. J Lipid Res. 1994;35:982–92.

    PubMed  CAS  Google Scholar 

  89. Fielding CJ. Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration. FASEB J. 1992;6:3162–8.

    PubMed  CAS  Google Scholar 

  90. Nestel PJ, Fide NH, Tan MH. Increased lipoprotein-remnant formation in chronic renal failure. N Engl J Med. 1982;307:329–33.

    Article  PubMed  CAS  Google Scholar 

  91. Kronenberg F, König P, Neyer U, Auinger M, Pribasnig A, Lang U, et al. Multicenter study of lipoprotein(a) and apolipoprotein(a) phenotypes in patients with end-stage renal disease treated by hemodialysis or continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 1995;6:110–20.

    PubMed  CAS  Google Scholar 

  92. Boes E, Fliser D, Ritz E, König P, Lhotta K, Mann JFE, et al.; for the MMKD Study Group. Apolipoprotein A-IV predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease Study. J Am Soc Nephrol. 2006;17:528–36.

    Google Scholar 

  93. Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B, Kronenberg MF, et al. Role of the kidney in the metabolism of apolipoproteins A-IV: influence of the type of proteinuria. J Lipid Res. 2006;47:2071–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Bianchi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Batini, V., Bianchi, S. (2014). The CKD Patient with Dyslipidemia. In: Covic, A., Kanbay, M., Lerma, E. (eds) Dyslipidemias in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0515-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0515-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0514-0

  • Online ISBN: 978-1-4939-0515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics