Skip to main content

Dyslipidemias in the Pediatric Chronic Kidney Disease Patient

  • Chapter
  • First Online:
Dyslipidemias in Kidney Disease

Abstract

The association between renal diseases and dyslipidemia has been recognized for a long time. Dyslipidemia increases the risk of cardiovascular events, contributes to the progression of renal insufficiency, and has been associated with allograft injury in renal transplant recipients. Although it is well known that the process of atherosclerosis begins in childhood, there were a limited number of studies in pediatric patients with chronic kidney diseases. The pattern of dyslipidemia differs among the major categories of renal diseases: nephrotic syndrome, chronic renal insufficiency/end-stage renal disease, and renal transplantation. Some patients with certain diseases encountered each of these stages progressively; thus, exposure to dyslipidemia can be more extended. In this chapter, epidemiology, causes, clinical implications, and treatment of lipid abnormalities in major renal disease categories of pediatric patients are discussed in light of the limited number of studies in this population. Concerning the differences between the disease profile of adults and children, adult data could not be directly translated in children. Thus, prospective investigations regarding the clinical implications and treatment of dyslipidemia in pediatric patients with kidney diseases are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978;13:159–65.

    Google Scholar 

  2. McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol. 2001;16:1040–4.

    PubMed  CAS  Google Scholar 

  3. White RH, Glasgow EF, Mills RJ. Clinicopathological study of nephrotic syndrome in childhood. Lancet. 1970;1:1353–9.

    PubMed  CAS  Google Scholar 

  4. Niaudet P. Steroid resistant idiopathic nephrotic syndrome in children. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. p. 557–73.

    Google Scholar 

  5. Gbadegesin R, Smoyer WE. Nephrotic syndrome. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia, PA: Mosby, Elsevier; 2008. p. 204–18.

    Google Scholar 

  6. Querfeld U. Should hyperlipidemia in children with the nephrotic syndrome be treated? Pediatr Nephrol. 1999;13:77–84.

    PubMed  CAS  Google Scholar 

  7. Querfeld U, Lang M, Friedrich JB, Kohl B, Fiehn W, Schörer K. Lipoprotein(a) serum levels and apolipoprotein(a) phenotypes in children with chronic renal disease. Pediatr Res. 1993;34:772–6.

    PubMed  CAS  Google Scholar 

  8. American Academy of Pediatrics. National Cholesterol Education Program: report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89: 525–84.

    Google Scholar 

  9. Kavey RE, Daniels SR, Lauer RM, Atkins DL, Hayman LL, Taubert K. American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. Circulation. 2003;107(11):1562–6; copublished in J Pediatr. 2003;142:368–72.

    PubMed  Google Scholar 

  10. Tamir I, Heiss G, Glueck CJ, Christensen B, Kwiterovich P, Rifkind B. Lipid and lipoprotein distributions in white children ages 6–19 yrs: the lipid research clinics program prevalence study. J Chronic Dis. 1981;34:27–39.

    PubMed  CAS  Google Scholar 

  11. Daniels SR, Greer FR. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122:198–208.

    PubMed  Google Scholar 

  12. Baxter JH, Goodman HC, Havel RJ. Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest. 1960;39:455–65.

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Valentini RP, Smoyer WE. Nephrotic syndrome. In: Kher KK, Schnaper HW, Makker SP, editors. Clinical pediatric nephrology. 2nd ed. London: Informa; 2007. p. 155–94.

    Google Scholar 

  14. Tsukahara H, Haruki S, Hiraoka M, Hori C, Sudo M. Persistent hypercholesterolaemia in frequently relapsing steroid-responsive nephrotic syndrome. J Paediatr Child Health. 1997;33:253–5.

    PubMed  CAS  Google Scholar 

  15. Merouani A, Levy E, Mongeau JG, Robitaille P, Lambert M, Delvin EE. Hyperlipidemic profiles during remission in childhood idiopathic nephrotic syndrome. Clin Biochem. 2003;36:571–4.

    PubMed  CAS  Google Scholar 

  16. Berlyne G, Mallick N. Ischemic heart disease as a complication of nephrotic syndrome. Lancet. 1969;II:339–40.

    Google Scholar 

  17. Hopp L, Gilboa N, Kurland G, Weichler N, Orchard TJ. Acute myocardial infarction in a young boy with nephrotic syndrome: a case report and review of the literature. Pediatr Nephrol. 1994;8:290–4.

    PubMed  CAS  Google Scholar 

  18. Kallen RJ, Brynes RK, Aronson AJ, Lichtig C, Spargo BH. Premature coronary atherosclerosis in a 5-year-old with corticosteroid-refractory nephrotic syndrome. Am J Dis Child. 1977;131:976–80.

    PubMed  CAS  Google Scholar 

  19. Silva JM, Oliveira EA, Marino VSP, Oliveira JS, Torres RM, Ribeiro AL, et al. Premature acute myocardial infarction in a child with nephrotic syndrome. Pediatr Nephrol. 2002;17:169–72.

    PubMed  Google Scholar 

  20. Antikainen M, Sariola H, Rapola J, Taskinen MR, Holthöfer H, Holmberg C. Pathology of renal arteries of dyslipidemic children with congenital nephrosis. APMIS. 1994;102:129–34.

    PubMed  CAS  Google Scholar 

  21. Portman R, Hawkins E, Verani R. Premature atherosclerosis in pediatric renal patients: report of the Southwest Pediatric Nephrology Study Group. Pediatr Res. 1991;29:2075A (Abstract).

    Google Scholar 

  22. Lechner BL, Bockenhauer D, Iragorri S, Kennedy TL, Siegel NJ. The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr Nephrol. 2004;19:744–8.

    PubMed  Google Scholar 

  23. Moorhead JF, El-Nahas M, Chan MK, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulointerstitial disease. Lancet. 1982;II:1309–12.

    Google Scholar 

  24. Diamond J. Hyperlipidemia of nephrosis: pathophysiologic role in progressive glomerular disease. Am J Med. 1989;87:25–9.

    Google Scholar 

  25. Keane WF, Mulcahy WS, Kasiske BL, Kim Y, O’Donnell MP. Hyperlipidemia and progressive renal disease. Kidney Int. 1991;39:41–8.

    Google Scholar 

  26. Keane WF, Kasiske BL, O’Donnell P, Kim Y. The role of altered lipid metabolism in the progression of renal disease: experimental evidence. Am J Kidney Dis. 1991;17:38–42.

    PubMed  CAS  Google Scholar 

  27. O’Donnell MP, Kasiske BL, Kim Y, Schmitz PG, Keane WF. Lovastatin retards the progression of established glomerular disease in obese Zucker rats. Am J Kidney Dis. 1993;22:83–9.

    PubMed  Google Scholar 

  28. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58:293–301.

    PubMed  CAS  Google Scholar 

  29. Cerkauskiene R, Kaminskas A, Kaltenis P, Vitkus D. Influence of omega-3 fatty acids on lipid metabolism in children with steroid sensitive nephrotic syndrome. Medicina (Kaunas). 2003;39:82–7.

    Google Scholar 

  30. Kwiterovich PO. Clinical and laboratory assessment of cardiovascular risk in children: guidelines for screening, evaluation, and treatment. J Clin Lipidol. 2008;2:248–66.

    PubMed  Google Scholar 

  31. Büyükçelik M, Anarat A, Bayazıt AK, Noyan A, Ozel A, Anarat R, et al. The effect of gemfibrozil on hyperlipidemia in children with persistent nephrotic syndrome. Turk J Pediatr. 2002;44:40–4.

    PubMed  Google Scholar 

  32. Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis. 2009;207:16–23.

    PubMed  CAS  Google Scholar 

  33. Querfeld U, Kohl B, Fiehn W, Minor T, Michalk D, Schörer K, et al. Probucol for treatment of hyperlipidemia in persistent childhood nephrotic syndrome. Pediatr Nephrol. 1999;13:7–12.

    PubMed  CAS  Google Scholar 

  34. Coleman JE, Watson AR. Hyperlipidemia, diet and simvastatin therapy in steroid resistant nephrotic syndrome of childhood. Pediatr Nephrol. 1996;10:171–4.

    PubMed  CAS  Google Scholar 

  35. Sanjad SA, Al-Abbad A, Al-Shorafa S. Management of hyperlipidemia in children with refractory nephrotic syndrome: the effect of statin therapy. J Pediatr. 1997;130:470–4.

    PubMed  CAS  Google Scholar 

  36. Muso E, Mune M, Fujii Y, Imai E, Ueda N, Hatta K, et al. Low density lipoprotein apheresis therapy for steroid-resistant nephrotic syndrome. Kansai-FGS-Apheresis Treatment (K-FLAT) Study Group. Kidney Int. 1999;71(Suppl):122–5.

    Google Scholar 

  37. Hattori M, Chikamoto H, Akioka Y, Nakakura H, Ogino D, Matsunaga A, et al. A combined low-density lipoprotein apheresis and prednisone therapy for steroid-resistant primary focal segmental glomerulosclerosis in children. Am J Kidney Dis. 2003;42:1121–30.

    PubMed  Google Scholar 

  38. Saland JM, Ginsberg H, Fisher EA. Dyslipidemia in pediatric renal disease: epidemiology, pathophysiology, and management. Curr Opin Pediatr. 2002;14:197–204.

    PubMed  Google Scholar 

  39. Papadopoulou ZL, Sandler P, Tina LU, Jose PA, Calcagno PL. Hyperlipidemia in children with chronic renal insufficiency. Pediatr Res. 1981;15:887–91.

    PubMed  CAS  Google Scholar 

  40. Zacchello G, Pagnan A, Sidran MP, Ziron L, Braggion M, Pavanello L, et al. Further definition of lipid-lipoprotein abnormalities in children with various degrees of chronic renal insufficiency. Pediatr Res. 1987;21:462–5.

    PubMed  CAS  Google Scholar 

  41. Saland JM, Pierce CB, Mitsnefes MM, Flynn JT, Goebel J, Kupferman JC, et al. Dyslipidemia in children with chronic kidney disease: a report of the chronic kidney disease in children (CKiD) study. Kidney Int. 2010;78:1154–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Pennisi AJ, Heuser ET, Mickey MR, Lipsey A, Malekzadeh M, Fine RN. Hyperlipidemia in pediatric haemodialysis and renal transplant patients. Am J Dis Child. 1976;130:957–61.

    PubMed  CAS  Google Scholar 

  43. El Bishti M, Counahan R, Jarrett RJ, Stimmler L, Wass V, Chantler C. Hyperlipidaemia in children on regular haemodialysis. Arch Dis Child. 1977;52:932–6.

    PubMed Central  PubMed  Google Scholar 

  44. Querfeld U, Salusky IB, Nelson P, Foley J, Fine RN. Hyperlipidemia in pediatric patients undergoing peritoneal dialysis. Pediatr Nephrol. 1988;2:447–52.

    PubMed  CAS  Google Scholar 

  45. Querfeld U, LeBoeuf RC, Salusky IB, Nelson P, Laidlaw S, Fine RN. Lipoproteins in children treated with continuous peritoneal dialysis. Pediatr Res. 1991;29:155–9.

    PubMed  CAS  Google Scholar 

  46. Scolnik D, Balfe JW. Initial hypoalbuminemia and hyperlipidemia persist during chronic peritoneal dialysis in children. Perit Dial Int. 1993;13:136–9.

    PubMed  CAS  Google Scholar 

  47. Kosan C, Sever L, Arisoy N, Caliskan S, Kasapcopur O. Carnitine supplementation improves apolipoprotein B levels in pediatric peritoneal dialysis patients. Pediatr Nephrol. 2003;18: 1184–8.

    PubMed  Google Scholar 

  48. Muller T, Koeppe S, Arbeiter K, Luckner D, Salzer U, Balzar E, et al. Serum lipid pattern unifies following renal transplantation in children. Pediatr Nephrol. 2003;18:939–42.

    PubMed  Google Scholar 

  49. Saland JM, Ginsberg HN. Lipoprotein metabolism in chronic renal insufficiency. Pediatr Nephrol. 2007;22:1095–112.

    PubMed  Google Scholar 

  50. Moberly JB, Attman PO, Samuelsson O, Johansson AC, Knight-Gibson C, Alaupovic P. Apolipoprotein C-III, hypertriglyceridemia and triglyceride-rich lipoproteins in uremia. Miner Electrolyte Metab. 1999;25:258–62.

    PubMed  CAS  Google Scholar 

  51. Monzani G, Bergesio F, Ciuti R, Rosati A, Frizzi V, Serruto A, et al. Lipoprotein abnormalities in chronic renal failure and dialysis patients. Blood Purif. 1996;14:262–72.

    PubMed  CAS  Google Scholar 

  52. Hager SR. Insulin resistance of uremia. Am J Kidney Dis. 1989;14:272–6.

    PubMed  CAS  Google Scholar 

  53. Howard BV. Insulin resistance and lipid metabolism. Am J Cardiol. 1999;84:28–32.

    Google Scholar 

  54. Lithell H, Boberg J, Hellsing K, Lundqvist G, Vessby B. Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis. 1978;30:89–94.

    PubMed  CAS  Google Scholar 

  55. Farese Jr RV, Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism. 1991;40:214–6.

    PubMed  CAS  Google Scholar 

  56. Mak RH. Insulin secretion and growth failure in uremia. Pediatr Res. 1995;38:379–83.

    PubMed  CAS  Google Scholar 

  57. Alvestrand A, Mujagic M, Wajngot A, Efendic S. Glucose intolerance in uremic patients: the relative contributions of impaired beta-cell function and insulin resistance. Clin Nephrol. 1989;31:175–83.

    PubMed  CAS  Google Scholar 

  58. Kimak E, Ksiazek A, Solski J. Disturbed lipoprotein composition in non-dialyzed, hemodialysis, continuous ambulatory peritoneal dialysis and post-transplant patients with chronic renal failure. Clin Chem Lab Med. 2006;44:64–9.

    PubMed  CAS  Google Scholar 

  59. Grutzmacher P, Marz W, Peschke B, Gross W, Schoeppe W. Lipoproteins and apolipoproteins during the progression of chronic renal disease. Nephron. 1988;50:103–11.

    PubMed  CAS  Google Scholar 

  60. Horkko S, Huttunen K, Laara E, Kervinen K, Kesaniemi YA. Effects of three treatment modes on plasma lipids and lipoproteins in uraemic patients. Ann Med. 1994;26:271–82.

    PubMed  CAS  Google Scholar 

  61. Horowitz BS, Goldberg IJ, Merab J, Vanni TM, Ramakrishnan R, Ginsberg HN. Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol. J Clin Invest. 1993;91:1743–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Bergesio F, Monzani G, Ciuti R, Serruto A, Benucci A, Frizzi V, Salvadori M. Lipids and apolipoproteins change during the progression of chronic renal failure. Clin Nephrol. 1992;38:264–70.

    PubMed  CAS  Google Scholar 

  63. Kasiske BL. Hyperlipidemia in patients with chronic renal disease. Am J Kidney Dis. 1998;32:142–56.

    Google Scholar 

  64. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43:1363–79.

    PubMed  CAS  Google Scholar 

  65. Massy ZA, Nguyen-Khoa T. Oxidative stress and chronic renal failure: markers and management. J Nephrol. 2002;15:336–41.

    PubMed  CAS  Google Scholar 

  66. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009–16.

    PubMed  Google Scholar 

  67. Querfeld U. Cardiovascular considerations of pediatric ESRD. In: Warady BA, Schaefer FS, Fine RN, Alexander SR, editors. Pediatric dialysis. Dordrecht: Kluwer Academic; 2004. p. 353–67.

    Google Scholar 

  68. Parekh RS, Carrol CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141:191–7.

    PubMed  CAS  Google Scholar 

  69. National Kidney Foundation Task Force on Cardiovascular Disease. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to know? Special report from the National Kidney Foundation task force on cardiovascular disease. Am J Kidney Dis. 1998;32:1–121.

    Google Scholar 

  70. U.S. Renal Data System: USRDS Annual Report. Bethesda: The National Institute of Diabetes and Digestive and Kidney Diseases. 2003. http://www.usrds.org

  71. Mitsnefes MM. Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol. 2008;23:27–39.

    PubMed Central  PubMed  Google Scholar 

  72. Wilson AC, Mitsnefes MM. Cardiovascular disease in CKD in children: update on risk factors, risk assessment, and management. Am J Kidney Dis. 2009;54:345–60.

    PubMed Central  PubMed  Google Scholar 

  73. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association expert panel on population and prevention science: the councils on cardiovascular disease in the young, epidemiology and prevention, nutrition, physical activity and metabolism, high blood pressure research, cardiovascular nursing, and the kidney in heart disease; and the Interdisciplinary Working Group on quality of care and outcomes research: endorsed by the American Academy of Pediatrics. Circulation. 2006;114: 2710–38.

    PubMed  Google Scholar 

  74. National Kidney Foundation: K/DOQI. Clinical practice guidelines for managing dyslipidemias in chronic kidney disease. Am J Kidney Dis. 2003;41 Suppl 3:61–70.

    Google Scholar 

  75. Secker D, Mak R. Nutritional challenges in pediatric chronic kidney disease. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia, PA: Mosby, Elsevier; 2008. p. 743–59.

    Google Scholar 

  76. Kari JA, Shaw V, Vallance DT, Rees L. Effect of enteral feeding on lipid subfractions in children with chronic kidney failure. Pediatr Nephrol. 1998;12:401–4.

    PubMed  CAS  Google Scholar 

  77. Mak RH. Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr Nephrol. 1998;12:660–5.

    PubMed  CAS  Google Scholar 

  78. Mak RH. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53:1353–7.

    PubMed  CAS  Google Scholar 

  79. Mak RH. Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol. 1999;13:891–3.

    PubMed  CAS  Google Scholar 

  80. Goren A, Stankiewicz H, Goldstein R, Drukker A. Fish oil treatment of hyperlipidemia in children and adolescents receiving renal replacement therapy. Pediatrics. 1991;88:265–8.

    PubMed  CAS  Google Scholar 

  81. Pieper AK, Haffner D, Hoppe B, Dittrich K, Offner G, Bonzel KE, et al. A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am J Kidney Dis. 2006;47:625–35.

    PubMed  CAS  Google Scholar 

  82. Gulati A, Sridhar V, Bose T, Hari P, Bagga A. Short-term efficacy of sevelamer versus calcium acetate in patients with chronic kidney disease stage 3–4. Int Urol Nephrol. 2010;42:1055–62.

    PubMed  CAS  Google Scholar 

  83. National Cholesterol Education Program. Report of the expert panel on blood cholesterol levels in children and adolescants. Pediatrics. 1992;89:495–584.

    Google Scholar 

  84. Avis HJ, Vissers MN, Stein EA, Wijburg FA, Trip MD, Kastelein JJ, et al. A systematic review and meta-analysis of statin therapy in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2007;27:1803–10.

    PubMed  CAS  Google Scholar 

  85. Garcia-de-la-Puenta S, Arredondo-Garcia JL, Gutierrez-Castrellon P, Bojorquez-Ochoa A, Maya ER, Perez-Martinez MDP. Efficacy of simvastatin in children with hyperlipidemia secondary to kidney disorders. Pediatr Nephrol. 2009;24:1205–10.

    Google Scholar 

  86. Mackie FE, Rosenberg AR, Harmer JA, Kainer G, Celermajer DS. HMG CoA reductase inhibition and endothelial function in children with chronic kidney disease (CKD)—a pilot study. Acta Paediatr. 2010;99:457–9.

    PubMed  CAS  Google Scholar 

  87. Tullus K. Dyslipidemia in children with CKD: should we treat with statins. Pediatr Nephrol. 2012;27:357–62.

    PubMed  Google Scholar 

  88. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350:2654–62.

    PubMed  CAS  Google Scholar 

  89. United States Renal Data System. Experts from the USRDS 2001 annual report. Am J Kidney Dis. 2001;38 Suppl 3:147–58.

    Google Scholar 

  90. Kobashigawa JA, Kasiske BL. Hyperlipidemia in solid organ transplantation. Transplantation. 1997;63:331–8.

    PubMed  CAS  Google Scholar 

  91. Pennisi AJ, Fiedler J, Lipsey A, Mickey R, Malekzadeh MH, Fine NR. Hyperlipidemia in pediatric renal allograft recipients. J Pediatr. 1975;87:249–51.

    PubMed  CAS  Google Scholar 

  92. Saldanha LF, Hurst KS, Amend Jr WJ, Lazarus JM, Lowrie EG, Ingelfinger J, et al. Hyperlipidemia after renal transplantation in children. Am J Dis Child. 1976;130:951–3.

    PubMed  CAS  Google Scholar 

  93. Goldstein S, Duhamel G, Laudat MH, Berthelier M, Hervy C, Tete MJ, et al. Plasma lipids, lipoproteins and apolipoproteins AI, AII, and B in renal transplanted children: what risk for accelerated atherosclerosis? Nephron. 1984;38:87–92.

    PubMed  CAS  Google Scholar 

  94. Sharma AK, Myers TA, Hunninghake DB, Matas AJ, Kashtan CE. Hyperlipidemia in long-term survivors of pediatric renal transplantation. Clin Transplant. 1994;8:252–7.

    PubMed  CAS  Google Scholar 

  95. Silverstein DM, Palmer J, Polinsky MS, Braas C, Conley SB, Baluarte HJ. Risk factors for hyperlipidemia in long-term pediatric renal transplant recipients. Pediatr Nephrol. 2000;14:105–10.

    PubMed  CAS  Google Scholar 

  96. Sgambat K, He J, McCarter R, Moudgil A. Lipoprotein profile changes in children after renal transplantation in the modern immunosuppression era. Pediatr Transplant. 2008;12: 796–803.

    PubMed  CAS  Google Scholar 

  97. Oberholzer J, John E, Lumpaopong A, Testa G, Sankary HN, Briars L, et al. Early discontinuation of steroids is safe and effective in pediatric kidney transplant recipients. Pediatr Transplant. 2005;9:456–63.

    PubMed  Google Scholar 

  98. Sarwal MM, Yorgin PD, Alexander S, Millan MT, Belson A, Belanger N, et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. Transplantation. 2001;72:13–21.

    PubMed  CAS  Google Scholar 

  99. Massy ZA, Kasiske BL. Post-transplant hyperlipidemia: mechanisms and management. J Am Soc Nephrol. 1996;7:971–7.

    PubMed  CAS  Google Scholar 

  100. Butani L. Dyslipidemia after renal transplantation: a cause for concern? Pediatr Transplant. 2008;12:724–8.

    PubMed  Google Scholar 

  101. Siirtola A, Virtanen SM, Ala-Houhala M, Koivisto AM, Solakivi T, Lehtimäki T, et al. Diet does not explain the high prevalence of dyslipidaemia in paediatric renal transplant recipients. Pediatr Nephrol. 2008;23:297–305.

    PubMed  Google Scholar 

  102. Perrea DN, Moulakakis KG, Poulakou MV, Vlachos IS, Nikiteas N, Kostakis A. Correlation between lipid abnormalities and immunosuppressive therapy in renal transplant recipients with stable renal function. Int Urol Nephrol. 2008;40:521–7.

    PubMed  CAS  Google Scholar 

  103. Mathis AS, Dave N, Knipp GT, Friedman GS. Drug-related dyslipidemia after renal transplantation. Am J Health Syst Pharm. 2004;61:565–85.

    PubMed  Google Scholar 

  104. Kasap B. Sirolimus in pediatric renal transplantation. Pediatr Transplant. 2011;15:673–85.

    PubMed  CAS  Google Scholar 

  105. Moulin P, Appel GB, Ginsberg HN, Tall AR. Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res. 1992;33:1817–22.

    PubMed  CAS  Google Scholar 

  106. Bittar AE, Ratcliffe PJ, Richardson AJ, Raine AE, Jones L, Yudkin PL, et al. The prevalence of hyperlipidemia in renal transplant recipients. Associations with immunosuppressive and antihypertensive therapy. Transplantation. 1990;50:987–92.

    PubMed  CAS  Google Scholar 

  107. Ost L. Impairment of prednisolone metabolism by cyclosporine treatment in renal graft recipients. Transplantation. 1987;44:533–5.

    PubMed  CAS  Google Scholar 

  108. Lopez-Miranda J, Vilella E, Perez-Jimenez F, Espino A, Jiménez-Perepérez JA, Masana L, et al. Low-density lipoprotein metabolism in rats treated with cyclosporine. Metabolism. 1993;42:678–83.

    PubMed  CAS  Google Scholar 

  109. Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, et al. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMGCoA reductase. Basic Clin Pharmacol Toxicol. 2007;100:392–7.

    PubMed  CAS  Google Scholar 

  110. Apanay DC, Neylan JF, Ragab MS, Sgoutas DS. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. Transplantation. 1994;58:663–9.

    PubMed  CAS  Google Scholar 

  111. Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993;142:1906–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Augustine JJ, Bodziak KA, Hricik DE. Use of sirolimus in solid organ transplantation. Drugs. 2007;67:369–91.

    PubMed  CAS  Google Scholar 

  113. Hoogeveen RC, Ballantyne CM, Pownall HJ, Opekun AR, Hachey DL, Jaffe JS, et al. Effect of sirolimus on the metabolism of apoBl00-containing lipoproteins in renal transplant patients. Transplantation. 2001;72:1244–50.

    PubMed  CAS  Google Scholar 

  114. Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, et al. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res. 2002;43:1170–80.

    PubMed  CAS  Google Scholar 

  115. Hymes LC, Warshaw BL. Sirolimus in pediatric patients: results in the first 6 months post-renal transplant. Pediatr Transplant. 2005;9:520–2.

    PubMed  CAS  Google Scholar 

  116. Powell HR, Kara T, Jones CL. Early experience with conversion to sirolimus in a pediatric renal transplant population. Pediatr Nephrol. 2007;22:1773–7.

    PubMed  Google Scholar 

  117. Hymes LC, Warshaw BL, Amaral SG, Greenbaum LA. Tacrolimus withdrawal and conversion to sirolimus at three months post-pediatric renal transplantation. Pediatr Transplant. 2008;12:773–7.

    PubMed  CAS  Google Scholar 

  118. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA. Contributions of the transplant registry: the 2006 annual report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant. 2007;11:366–73.

    PubMed  Google Scholar 

  119. Silverstein DM, Mitchell M, LeBlanc P, Boudreaux JP. Assessment of risk factors for cardiovascular disease in pediatric renal transplant patients. Pediatr Transplant. 2007;11:721–9.

    PubMed  CAS  Google Scholar 

  120. Wilson AC, Greenbaum LA, Barletta GM, Chand D, Lin JJ, Patel HP, et al. High prevalence of the metabolic syndrome and associated left ventricular hypertrophy in pediatric renal transplant recipients. Pediatr Transplant. 2010;14:52–60.

    PubMed  Google Scholar 

  121. McGill Jr HC, McMahan CA. Determinants of atherosclerosis in the young. Pathobiological determinants of atherosclerosis in youth (PDAY) research group. Am J Cardiol. 1998;82:30–6.

    Google Scholar 

  122. Newman III WP, Freedman DS, Voors AW, Gard PD, Srinivasan SR, Cresanta JL, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: the Bogalusa Heart Study. N Engl J Med. 1986;314:138–44.

    PubMed  Google Scholar 

  123. Berenson GS, Srinivasan SR, Bao W, Newman III WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and the early development of atherosclerosis. Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.

    PubMed  CAS  Google Scholar 

  124. Guijarro C, Massy ZA, Kasiske BL. Clinical correlation between renal allograft failure and hyperlipidemia. Kidney Int Suppl. 1995;52:56–9.

    Google Scholar 

  125. Massy ZA, Guijarro C, Wiederkehr MR, Ma JZ, Kasiske BL. Chronic renal allograft rejection: immunologic and nonimmunologic risk factors. Kidney Int. 1996;49:518–24.

    PubMed  CAS  Google Scholar 

  126. Valavi E, Otukesh H, Fereshtehnejad SM, Sharifian M. Clinical correlation between dyslipidemia and pediatric chronic allograft nephropathy. Pediatr Transplant. 2008;12:748–54.

    PubMed  Google Scholar 

  127. Obarzanek E, Kimm SY, Barton BA, Van Horn LL, Kwiterovich Jr PO, Simons-Morton DG, et al. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the dietary intervention study in children (DISC). Pediatrics. 2001;107:256–64.

    PubMed  CAS  Google Scholar 

  128. Delucchi A, Marin V, Trabucco G, Azocar P, Salas E, Gutierrez E, et al. Dyslipidemia and dietary modification in Chilean renal pediatric transplantation. Transplant Proc. 2001;33: 1297–301.

    PubMed  CAS  Google Scholar 

  129. Filler G, Weiglein G, Gharib MT, Casier S. Ω3 fatty acids may reduce hyperlipidemia in pediatric renal transplant recipients. Pediatr Transplant. 2012;16:835–9.

    PubMed  CAS  Google Scholar 

  130. Filler G, Webb NJ, Milford DV, Watson AR, Gellermann J, Tyden G, et al. Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs. cyclosporin microemulsion. Pediatr Transplant. 2005;9:498–503.

    PubMed  CAS  Google Scholar 

  131. Lau KK, Tancredi DJ, Perez RV, Butani L. Unusual pattern of dyslipidemia in children receiving steroid minimization immunosuppression after renal transplantation. Clin J Am Soc Nephrol. 2010;5:1506–12.

    PubMed Central  PubMed  Google Scholar 

  132. Kasiske B, Cosio FG, Beto J, Bolton K, Chavers BM, Grimm Jr R, et al. Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: a report from the managing dyslipidemias in Chronic Kidney Disease Work Group of the National Kidney Foundation kidney disease outcomes quality initiative. Am J Transplant. 2004;4 Suppl 7:13–53.

    PubMed  Google Scholar 

  133. Penson MG, Fricker FJ, Thompson JR, Harker K, Williams BJ, Kahler DA, et al. Safety and efficacy of pravastatin therapy for the prevention of hyperlipidemia in pediatric and adolescent cardiac transplant recipients. J Heart Lung Transplant. 2001;20:611–8.

    PubMed  CAS  Google Scholar 

  134. Krmar RT, Ferraris JR, Ramirez JA, Sorroche P, Legal S, Cayssials A. Use of atorvastatin in hyperlipidemic hypertensive renal transplant recipients. Pediatr Nephrol. 2002;17:540–3.

    PubMed  Google Scholar 

  135. Argent E, Kainer G, Aitken M, Rosenberg AR, Mackie FE. Atorvastatin treatment for hyperlipidemia in pediatric renal transplant recipients. Pediatr Transplant. 2003;7:38–42.

    PubMed  CAS  Google Scholar 

  136. Butani L, Pai MV, Makker SP. Pilot study describing the use of pravastatin in pediatric renal transplant recipients. Pediatr Transplant. 2003;7:179–84.

    PubMed  CAS  Google Scholar 

  137. Butani L. Prospective monitoring of lipid profiles in children receiving pravastatin preemptively after renal transplantation. Pediatr Transplant. 2005;9:746–53.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Birsin Özçakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Özçakar, Z.B., Yalçınkaya, F. (2014). Dyslipidemias in the Pediatric Chronic Kidney Disease Patient. In: Covic, A., Kanbay, M., Lerma, E. (eds) Dyslipidemias in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0515-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0515-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0514-0

  • Online ISBN: 978-1-4939-0515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics