Advertisement

Oxidative Stress in Tuberculosis

  • Indu Verma
  • Surinder K. Jindal
  • Nirmal K. Ganguly
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Following infection with Mycobacterium tuberculosis, reactive oxygen species (ROS) are generated by host phagocytic cells as a part of host defence system. Mycobacterium, being a successful intracellular pathogen, has evolved a number of antioxidant strategies to avoid killing by ROS produced by host cells. At the same time, excess of these ROS can result in necrosis of granulomatous lesions causing dissemination of bacilli from the granulomas. A number of antioxidant mechanisms are also involved in protecting the host cells from the damage caused by the oxidative stress. Understanding this complex interplay between oxidative stress generated during tuberculosis and antioxidant mechanisms employed by the host and the Mtb is important to develop new preventive/therapeutic strategies for tuberculosis. There exists a potential supplemental role for micronutrient and other antioxidants in management of both drug-sensitive and drug-resistant tuberculosis. The antioxidants may also find a beneficial role in prevention and treatment of drug toxicity, particularly hepatotoxicity due to anti-tubercular drugs.

Keywords

Reactive Oxygen Species Nitric Oxide Mycobacterium Tuberculosis Oxidative Stress Index Reactive Nitrogen Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abede F, Bjune G (2009) The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin Exp Immunol 157:235–243CrossRefGoogle Scholar
  2. 2.
    Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL (1997) Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78:237–246PubMedCrossRefGoogle Scholar
  3. 3.
    Andrade BB, Pavan KN, Mayer-Barber KD, Barber DL, Sridhar R, Rekha VV, Jawahar MS, Nutman TB, Sher A, Babu S (2013) Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One 8:e62618PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  5. 5.
    Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  6. 6.
    Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A (2012) The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 53:1625–1641PubMedCrossRefGoogle Scholar
  7. 7.
    Biswas SK, Rahman I (2009) Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 30:60–76PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bonecini-Almeida MG, Chitale S, Boutsikakis I, Geng J, Doo H, He S et al (1998) Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity requirement for IFN-gamma and primed lymphocytes. J Immunol 160:4490–4499PubMedGoogle Scholar
  9. 9.
    Buchmeier NA, Newton GL, Koledin T, Fahey RC (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47(6):1723–1732PubMedCrossRefGoogle Scholar
  10. 10.
    Buchmeier NA, Newton GL, Fahey RC (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188(17):6245–6252PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Castegna A, Drake J, Pocernich C, Butterfield DA (2003) Protein carbonyl levels—an assessment of protein oxidation. In: Hensley K and Floyd RA (eds) Methods in Pharmacology and Toxicology: methods in Biological oxidative stress. Humana Press Inc. Totowa, NJ, pp 161–168Google Scholar
  12. 12.
    Chan J, Flynn JL (1999) Nitric oxide in Mycobacterium tuberculosis infection. In: Fang FC (ed) Nitric oxide and infection. Plenum/Kluwer Academic, New York, pp 281–310Google Scholar
  13. 13.
    Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175(4):1111–1122PubMedCrossRefGoogle Scholar
  14. 14.
    Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR (1995) Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63(2):736–740PubMedCentralPubMedGoogle Scholar
  15. 15.
    Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, Kong AN (2004) Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 37(10):1578–1590PubMedCrossRefGoogle Scholar
  16. 16.
    Chevion M, Berenshtein E, Stadtman ER (2000) Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 33(108):S99–S108PubMedGoogle Scholar
  17. 17.
    Cho HY, Kleeberger SR (2007) Genetic mechanisms of susceptibility to oxidative lung injury in mice. Free Radic Biol Med 42(4):433–445PubMedCrossRefGoogle Scholar
  18. 18.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper AM (2009) Cell mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistance to pulmonary tuberculosis in p47 phox−/− mice. Infect Immun 68(3):1231–1234PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dalvi SM, Patil VW, Ramraje NN (2012) The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra pulmonary tuberculosis. J Clin Diagn Res 6(9):1462–1465PubMedCentralPubMedGoogle Scholar
  22. 22.
    Dannenberg AM Jr, Converse PJ (2011) Pathophysiology and immunology. In: Schlossberg D (ed) Tuberculosis and nontuberculous mycobacterial infections, 6th edn. ASM Press, Washington, DC, pp 29–65Google Scholar
  23. 23.
    de Oliveira LR, Peresi E, Tavares FC, Correa CR, Pierine DT, Calvi SA (2012) DNA damage in peripheral blood mononuclear cells of patients undergoing anti-tuberculosis treatment. Mutat Res 747:82–85PubMedCrossRefGoogle Scholar
  24. 24.
    Deretic V, Philipp W, Dhandayuthapani S, Mudd MH, Curcic R et al (1995) Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol 17(5):889–900PubMedCrossRefGoogle Scholar
  25. 25.
    Edwards KM, Cynamon MH, Voladri RK, Hager CC, DeStefano MS et al (2001) Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 164(12):2213–2219PubMedCrossRefGoogle Scholar
  26. 26.
    Ehrt S, Schnappinger D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11(8):1170–1178PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Epiphanio S, Mikolajczak SA, Gonçalves LA, Pamplona A, Portugal S et al (2008) Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe 3(5):331–338PubMedCrossRefGoogle Scholar
  28. 28.
    Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK et al (2010) Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 57:43–117PubMedCrossRefGoogle Scholar
  29. 29.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129PubMedCrossRefGoogle Scholar
  30. 30.
    Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354PubMedCrossRefGoogle Scholar
  31. 31.
    Gurumurthy M, Rao M, Mukherjee T, Rao SPS, Boshoff HI et al (2013) A novel F420-dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol 87(4):744–755PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(Pt 2):345–350PubMedCrossRefGoogle Scholar
  33. 33.
    Hasan MR, Rahman M, Jaques S, Purwantini E, Daniels L (2010) Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 285(25):19135–19144PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hu Y, Coates ARM (2009) Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TPX. PLoS One 4(4):e5150PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Idh J, Mekonnen M, Abate E, Wedajo W, Werngren J, Angeby K, Lerm M, Elias D, Sundqvist T, Aseffa A, Stendahl O, Schon T (2012) Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PLoS One 7(6):e39891PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Jack CI, Jackson MJ, Hind CR (1994) Circulating markers of free radical activity in patients with pulmonary tuberculosis. Tuber Lung Dis 75(2):132–137PubMedCrossRefGoogle Scholar
  37. 37.
    Joseph J, Nagashri K, Janaki GB (2012) Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem 49:151–163PubMedCrossRefGoogle Scholar
  38. 38.
    Jung YJ, LaCourse R, Ryan L, North RJ (2002) Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide synthase 2-independent defense in mice. J Exp Med 196(7):991–998PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kumar V, Jindal SK, Ganguly NK (1995) Release of reactive oxygen and nitrogen intermediates from monocytes of patients with pulmonary tuberculosis. Scand J Clin Lab Invest 55:163–169PubMedCrossRefGoogle Scholar
  40. 40.
    Kumar A, Farhana A, Guidry L, Saini V, Hondalus M et al (2011) Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med 13:e39PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kwiatkowska S, Piasecka G, Zieba M, Piotrowski W, Nowak D (1999) Increased serum concentrations of conjugated dienes and malondialdehyde in patients with pulmonary tuberculosis. Respir Med 93(4):272–276PubMedCrossRefGoogle Scholar
  42. 42.
    Lee PP, Chan KW, Jiang L, Chen T, Li C et al (2008) Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for tuberculosis. Pediatr Infect Dis J 27(3):224–230PubMedCrossRefGoogle Scholar
  43. 43.
    Lee WL, Gold B, Darby C, Brot N, Jiang X et al (2009) Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 71(3):583–593PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Li N, Nel AE (2006) Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 8(1–2):88–98PubMedCrossRefGoogle Scholar
  45. 45.
    Li Z, Kelley C, Collins F, Rouse D, Morris S (1998) Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177(4):1030–1035PubMedCrossRefGoogle Scholar
  46. 46.
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK et al (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94(10):5243–5248PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Madebo T, Lindtjorn B, Aukrust P, Berge RK (2003) Circulating antioxidants and lipid peroxidation products in untreated tuberculosis patients in Ethiopia. Am J Clin Nutr 78(1):117–122PubMedGoogle Scholar
  48. 48.
    Maglione PJ, Chan J (2009) How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol 39:676–686PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Manca C, Paul S, Barry CE, Freedman VH, Kaplan G (1999) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67:74–79PubMedCentralPubMedGoogle Scholar
  50. 50.
    Master SS, Springer B, Sander P, Boettger EC, Deretic V et al (2002) Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148(Pt 10):3139–3144PubMedGoogle Scholar
  51. 51.
    McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L et al (2004) Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione s-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr 134(12):3499S–3506SPubMedGoogle Scholar
  52. 52.
    Menshchikova E, Zenkov N, Tkachev V, Potapova O, Cherdantseva L et al (2013) Oxidative stress and free-radical oxidation in BCG granulomatosis development. Oxid Med Cell Longev 2013:8CrossRefGoogle Scholar
  53. 53.
    Mitchison DA, Selkon JB, Lloyd J (1963) Virulence in the guinea-pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from South Indian and British patients. J Pathol Bacteriol 86:377–386PubMedCrossRefGoogle Scholar
  54. 54.
    Mohod K, Dhok A, Kumar S (2011) Status of oxidants and antioxidants in pulmonary tuberculosis with varying bacillary load. J Exp Sci 2(6):35–37Google Scholar
  55. 55.
    Morse D, Choi AM (2005) Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 172(6):660–670PubMedCrossRefGoogle Scholar
  56. 56.
    Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Nathan C, Xie QW et al (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183(5):2293–2302PubMedCrossRefGoogle Scholar
  57. 57.
    O’Brien S, Jackett PS, Lowrie DB, Andrew PW (1991) Guinea-pig alveolar macrophages kill Mycobacterium tuberculosis in vitro, but killing is independent of susceptibility to hydrogen peroxide or triggering of the respiratory burst. Microb Pathog 10(3):199–207PubMedCrossRefGoogle Scholar
  58. 58.
    O’Sullivan DM, McHugh TB, Gillespie SH (2008) The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. J Antimicrob Chemother 62:709–712PubMedCrossRefGoogle Scholar
  59. 59.
    Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM et al (2011) Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One 6(10):e26254PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Pichat P, Reveilleau A (1950) Bactericidal action for Koch’s bacilli of massive doses of vitamin C; comparison of its action on a certain number of other microbes. Ann Inst Pasteur (Paris) 79(3):342–344Google Scholar
  61. 61.
    Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM et al (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69(8):4980–4987PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Plit ML, Theron AJ, Fickl H, van Rensburg CE, Pendel S et al (1998) Influence of antimicrobial chemotherapy and smoking status on the plasma concentrations of vitamin C, vitamin E, beta-carotene, acute phase reactants, iron and lipid peroxides in patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 2(7):590–596PubMedGoogle Scholar
  63. 63.
    Reddy YN, Murthy SV, Krishna DR, Prabhakar MC (2004) Role of free radicals and antioxidants in tuberculosis patients. Indian J Tuberc 51:213–218Google Scholar
  64. 64.
    Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JC et al (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32(2):342–349PubMedCrossRefGoogle Scholar
  65. 65.
    Romero MM, Balboa L, Basile JI, López B, Ritacco V et al (2012) Clinical isolates of Mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin Dev Immunol 11:152546Google Scholar
  66. 66.
    Schon T, Idh J, Westman A, Elias D, Abate E, Diro E, Moges F, Kassu A, Ayele B, Forslund T, Getachew A, Britton S, Stendahl O, Sundqvist T (2011) Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis—a randomized trial. Tuberculosis 91:370–377PubMedCrossRefGoogle Scholar
  67. 67.
    Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182(2–3):126–137PubMedGoogle Scholar
  68. 68.
    Selvaraj P, Venkataprasad N, Vijayan VK, Prabhakar R, Narayanan PR (1988) Alveolar macrophages in patients with pulmonary tuberculosis. Lung India 6:71–74Google Scholar
  69. 69.
    Seyedrezazadeh E, Ostadrahimi A, Mahboob S, Assadi Y, Ghaemmagami J, Pourmogaddam M (2008) Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 13:294–298PubMedCrossRefGoogle Scholar
  70. 70.
    Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3(5):323–330PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Singh KK, Verma I (2011) Immunology and pathogenesis. In: Jindal SK et al (eds) Textbook of pulmonary and critical care medicine. Jaypee Brothers Medical Publishers, New Delhi, pp 528–538Google Scholar
  72. 72.
    Singh M, Sasi P, Gupta VH, Rai G, Amarapurkar DN, Wangikar PP (2012) Protective effect of curcumin, silymarin and N-acetylcysteine on antitubercular drug-induced hepatotoxicity assessed in an in vitro model. Hum Exp Toxicol 31:788–797PubMedCrossRefGoogle Scholar
  73. 73.
    Stone I (1972) The healing factor: vitamin C against disease. Grosset and Dunlap, New YorkGoogle Scholar
  74. 74.
    Swamy R, Acharyalu GS, Balasubramaniam R, Narayanan PR, Prabhakar R (1988) Immunological investigations in tuberculous ascites. Indian J Tuberc 35:3–7Google Scholar
  75. 75.
    Talreja J, Bhatnagar A, Jindal SK, Ganguly NK (2003) Influence of Mycobacterium tuberculosis on differential activation of helper T-cells. Clin Exp Immunol 131:292–298PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Taneja NK, Dhingra S, Mittal A, Naresh M, Tyagi JS (2010) Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 5(5):e10860PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61(2):748–755PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A (2012) Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 60:263–324PubMedCrossRefGoogle Scholar
  79. 79.
    Vijayamalini M, Manoharan S (2004) Lipid peroxidation, vitamins C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem Funct 22(1):19–22PubMedCrossRefGoogle Scholar
  80. 80.
    Vilcheze C, Hartman T, Weinrick B, Jacobs WR Jr (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 4:1881PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Walker L, Lowrie DB (1981) Killing of Mycobacterium microti by immunologically activated macrophages. Nature 293(5827):69–71PubMedCrossRefGoogle Scholar
  82. 82.
    Wang ZY, Xiong M, Fu LY, Zhang HY (2013) Oxidative DNA damage is important to the evolution of antibiotic resistance: evidence of mutation bias and its medicinal implications. J Biomol Struct Dyn 31:729–733PubMedCrossRefGoogle Scholar
  83. 83.
    WHO (2012) Global tuberculosis control. WHO report. WHO, GenevaGoogle Scholar
  84. 84.
    Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274(47):33627–33636PubMedCrossRefGoogle Scholar
  85. 85.
    Wilson TM, Collins DM (1996) ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol Microbiol 19(5):1025–1034PubMedCrossRefGoogle Scholar
  86. 86.
    Yuniastuti A (2012) The role and characteristic of antioxidant for redox homeostasis control system in Mycobacterium tuberculosis. Int Res J Microbiol 3:416–422Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Indu Verma
    • 1
  • Surinder K. Jindal
    • 2
  • Nirmal K. Ganguly
    • 3
  1. 1.Department of BiochemistryPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Department of Pulmonary MedicinePostgraduate Institute of Medical Education and ResearchChandigarhIndia
  3. 3.Department of BiotechnologyNational Institute of ImmunologyNew DelhiIndia

Personalised recommendations