Skip to main content

Reactive Oxygen and Nitrogen Species: General Considerations

  • Chapter
  • First Online:
Studies on Respiratory Disorders

Abstract

Reactive species provoke amplification of inflammatory response in the airways and lung parenchyma causing inhibition of mitochondrial respiration, and lipid, protein, and DNA damage causing oxidative stress. Long-term persistence of oxidative stress may contribute to progressive deterioration of pulmonary functions leading to respiratory failure. Recent reports, suggesting protein nitration as dynamic and reversible (denitration) mechanism, open new horizons in the treatment of chronic respiratory disease affected by deleterious action of nitrosative stress. Reduced antioxidants in the body overwhelm the system with oxidants and promote cellular oxidative stress. Different species of ROS activate various transcription factors altering signaling pathways, and lead to divergent cellular response.

Therapeutic interventions which increase endogenous lung antioxidants, or with administration of exogenous antioxidants which reduce effects of environmental exposure to oxidants may prove to be beneficial as adjunct therapies in respiratory disorders. Hundreds of antioxidant supplements are readily available in the market which require regulation for efficacy and side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691

    PubMed  CAS  Google Scholar 

  2. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  3. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78:7124–7128

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  5. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724

    PubMed  CAS  Google Scholar 

  6. Dupont GP, Huecksteadt TP (1992) Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. J Clin Invest 89(1):197–202

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Forman H, Fukuto JM, Miller T et al (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477(2):183–195

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Fridovich I (1987) The biology of oxygen radicals. Science 201:875–880

    Google Scholar 

  9. Gielis JF, Lin JY, Wingler K et al (2011) Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free Radic Biol Med 50(7):765–776

    PubMed  CAS  Google Scholar 

  10. Crapo JD (2003) Oxidative stress as an initiator of cytokine release and cell damage. Eur Respir J 22(suppl 44):4s–6s

    CAS  Google Scholar 

  11. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    PubMed  CAS  Google Scholar 

  12. Jain M, Stephaine R, Elena A et al (2013) Mitochondrial reactive oxygen species regulate TGF-beta signaling. J Biol Chem 288(2):770–777

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Tabima DM, Shiella F, Mark T et al (2012) Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 52(9):1970–1986

    PubMed  CAS  Google Scholar 

  14. Miyano KS, Takeya R et al (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338(1):677–686

    PubMed  Google Scholar 

  15. Boveris T (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427

    PubMed Central  PubMed  Google Scholar 

  16. Crosswhite P, Sun Z (2010) Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens 28(2):201–212

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Nishino T, Okamoto K, Eger BT et al (2008) Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289

    PubMed  CAS  Google Scholar 

  18. Harrison R (2004) Physiological roles of xanthine oxidoreductase. Drug Metab Rev 36(2):363–375

    PubMed  CAS  Google Scholar 

  19. Takano Y, Hase-Aoki K, Horiuchi H et al (2005) Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci 76(16):1835–1847

    PubMed  CAS  Google Scholar 

  20. Palmer RM, Rees DD, Ashton DS et al (1980) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153(3):1251–1256

    Google Scholar 

  21. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  22. Culotta E, Koshland DE Jr (1992) NO news is good news. Science 258(5090):1862–1864

    PubMed  CAS  Google Scholar 

  23. Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61

    PubMed  CAS  Google Scholar 

  24. Ignarro LJ (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30:535–560

    PubMed  CAS  Google Scholar 

  25. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylatecyclase and increases guanosine 3’:5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74:83203–83207

    Google Scholar 

  26. White KA, Marletta MA (1992) Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 31(29):6627–6631

    PubMed  CAS  Google Scholar 

  27. McMillan K, Bredt DS, Hirsch DJ et al (1992) Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A 89(23):11141–11145

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351(6329):714–718

    PubMed  CAS  Google Scholar 

  29. Marsden S, Chappert KT, Chen HS et al (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 307:287–293

    PubMed  CAS  Google Scholar 

  30. Bredt DS (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87(2):682–685

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Long CJ (1985) The release of endothelium-derived relaxant factor is calcium dependent. Blood Vessels 22:205–208

    PubMed  CAS  Google Scholar 

  32. Busse R (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS J 265(1–2):133–136

    CAS  Google Scholar 

  33. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92(3):639–646

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    PubMed  CAS  Google Scholar 

  35. Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191

    PubMed  CAS  Google Scholar 

  36. Michel T, Li GK, Busconi L (1993) Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 90:6252–6256

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Brüne B, Lapetina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264:8455–8458

    PubMed  Google Scholar 

  38. Carr AC et al (2000) Oxidation of ldl by myeloperoxidase and reactive nitrogen species reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20:1716–1723

    PubMed  CAS  Google Scholar 

  39. Li JX (1999) Antioxidants and oxidative stress in exercise. Exp Biol Med 222(3):283–292

    Google Scholar 

  40. Datta K, Sinha S, Chattopadhyay P (2000) Reactive oxygen species in health and disease. Natl Med J India 13(6):304–310

    PubMed  CAS  Google Scholar 

  41. Faraci FM, Didion SP (2004) Vascular protection superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373

    PubMed  CAS  Google Scholar 

  42. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1336

    PubMed  CAS  Google Scholar 

  43. Arrigo AP (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27(9–10):915–1134

    Google Scholar 

  44. Trachootham D, Lu W, Ogasawara MA (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124

    PubMed  CAS  Google Scholar 

  46. Kabe Y et al (2005) Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7(3–4):395–403

    PubMed  CAS  Google Scholar 

  47. Pantano C, Reynaert NL, van der Vliet A et al (2006) Redox-sensitive kinases of the nuclear factor-kappa B signaling pathway. Antioxid Redox Signal 8:1791–1806

    PubMed  CAS  Google Scholar 

  48. Shaulian E (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    PubMed  CAS  Google Scholar 

  49. Forman HJ, Fukuto M, Tom M et al (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477(2):183–195

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 24(4–5):149–159

    PubMed  CAS  Google Scholar 

  51. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Irrcher I, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296(1):C116–C123

    PubMed  CAS  Google Scholar 

  53. Colombo SL, Moncada S (2009) AMPKalpha1 regulates the antioxidant status of vascular endothelial cells. Biochem J 421(2):163–169

    PubMed  CAS  Google Scholar 

  54. Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391

    PubMed  CAS  Google Scholar 

  55. Knebel A, Rahmsdorf HJ, Ullrich A et al (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15:5314–5325

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Yu C, Friday BB, Lai JP et al (2007) Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res 13(4):1140–1148

    PubMed  CAS  Google Scholar 

  57. Warren JR, Zee R et al (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296(1):1–6

    Google Scholar 

  58. Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7(5–6):560–577

    PubMed  CAS  Google Scholar 

  59. Pelicano H, Xu RH, Du M, Feng L et al (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175(6):913–923

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Poppek D, Grune T (2006) Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal 8(1–2):173–184

    PubMed  CAS  Google Scholar 

  61. Toledano MB (2009) The guardian recruits cops: the p53-p21 axis delegates prosurvival duties to the Keap1-Nrf2 stress pathway. Mol Cell 34(6):637–639

    PubMed  CAS  Google Scholar 

  62. Thimmulappa R, Kim H, Srisuma S et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    PubMed  CAS  Google Scholar 

  63. Stępkowski TM, Kruszewski MK (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med 50(9):1186–1195

    PubMed  Google Scholar 

  64. Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141:105–112

    PubMed  Google Scholar 

  65. Marotta F, Naito Y, Jain S et al (2012) Is there a potential application of a fermented nutraceutical in acute respiratory illnesses? An in-vivo placebo-controlled, cross-over clinical study in different age groups of healthy subjects. J Biol Regul Homeost Agents 26(2):285–294

    PubMed  CAS  Google Scholar 

  66. Fu P, Birukova AA, Xing J et al (2009) Amifostine reduces lung vascular permeability via suppression of inflammatory signaling. Eur Respir J 33:612–624

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Fu P, Murley JS, Grdina DJ et al (2011) Induction of cellular antioxidant defense by amifostine improves ventilator-induced lung injury. Crit Care Med 39(12):2711–2721

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Moretti M (2007) Pharmacology and clinical efficacy of erdosteine in chronic obstructive pulmonary disease. Expert Rev Respir Med 1(3):307–316

    PubMed  CAS  Google Scholar 

  69. Martin GS, Robert J, Arthur P et al (2002) Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med 30:2175–2182

    PubMed  CAS  Google Scholar 

  70. Biswas SK, Rahman I (2009) Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 30(1–2):60–76

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Radomska-Leśniewska DM (2012) N-acetylcysteine as an anti-oxidant and anti-inflammatory drug and its some clinical applications. Cent Eur J Immunol 37(1):57–66

    Google Scholar 

  72. Korkmaz A, Reiter RJ, Topal T et al (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15(1–2):43–50

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Xie XH, Zang N, Li SM et al (2012) Resveratrol Inhibits respiratory syncytial virus-induced IL-6 production, decreases viral replication, and downregulates TRIF expression in airway epithelial cells. Inflammation 35(4):1392–1401

    PubMed  CAS  Google Scholar 

  74. Lyzogub VH, Altunina NV, Bondarchuk OM (2011) Application of alpha-lipoic acid in clinical practice. Lik Sprava 7–8:20–28

    PubMed  Google Scholar 

  75. Hoffer LJ, Tamayo C, Richardson MA (2000) Vitamin C as cancer therapy: an overview. J Orthomol Med 15(4)

    Google Scholar 

  76. Tao L, Jiao X, Gao E et al (2006) Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114(13):1395–1402

    PubMed  CAS  Google Scholar 

  77. Edes K, Cassidy P, Shami PJ et al (2010) JS-K, a nitric oxide prodrug, has enhanced cytotoxicity in colon cancer cells with knockdown of Thioredoxin Reductase 1. PLoS One 5(1):e8786

    PubMed Central  PubMed  Google Scholar 

  78. Vasu VT, de Cruz SJ, Houghton JS et al (2011) Evaluation of thiol-based antioxidant therapeutics in cystic fibrosis sputum: focus on myeloperoxidase. Free Radic Res 45(2):165–176

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Schünemann HJ, Freudenheim JL, Grant BJ (2001) Epidemiologic evidence linking antioxidant vitamins to pulmonary function and airway obstruction. Epidemiol Rev 23(2):248–267

    PubMed  Google Scholar 

  80. Smit HA (2001) Chronic obstructive pulmonary disease, asthma and protective effects of food intake: from hypothesis to evidence? Respir Res 2:261–264

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Sun B (2012) Inhaled nitric oxide and neonatal brain damage: experimental and clinical evidences. J Matern Fetal Neonatal Med 25(suppl 1):51–54

    PubMed  CAS  Google Scholar 

  82. Fan E, VillarJ SJS (2013) Novel approaches to minimize ventilator-induced lung injury. BMC Med 11:85

    PubMed Central  PubMed  Google Scholar 

  83. Day BJ (2005) Glutathione: a radical treatment for cystic fibrosis lung disease? Chest 127(1):12–14

    PubMed  Google Scholar 

  84. Hudson VM (2004) New insights into the pathogenesis of cystic fibrosis: pivotal role of glutathione system dysfunction and implications for therapy. Treat Respir Med 3(6):353–363

    PubMed  CAS  Google Scholar 

  85. Afshari A, Brok J, Moller AM et al (2011) Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg 112(6):1411–1421

    PubMed  Google Scholar 

  86. Cortes GA, Marini JJ (2012) Update: adjuncts to mechanical ventilation. Curr Opin Anaesthesiol 25(2):156–163

    PubMed  Google Scholar 

  87. Dushianthan A (2011) Acute respiratory distress syndrome and acute lung injury. Postgrad Med J 87(1031):612–622

    PubMed  CAS  Google Scholar 

  88. Donohue PK, Maureen M, Wilson RF et al (2011) Inhaled nitric oxide in preterm infants: a systematic review. Pediatrics 127(2):e414–e422

    PubMed  Google Scholar 

  89. Al Hajeri A, Serjeant GR, Fedorowicz Z (2008) Inhaled nitric oxide for acute chest syndrome in people with sickle cell disease. Cochrane Database Syst Rev 1, CD006957

    PubMed  Google Scholar 

  90. Mahmmoud YA (2007) Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. Br J Pharmacol 150(2):200–208

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Pekoe G, Van Dyke K, Mengoli H et al (1982) Comparison of the effects of antioxidant non-steroidal anti-inflammatory drugs against myeloperoxidase and hypochlorous acid luminol-enhanced chemiluminescence. Agents Actions 12(1–2):232–238

    PubMed  CAS  Google Scholar 

  92. Zrelli H, Matsuoka M, Kitazaki S et al (2011) Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3 a pathway. Eur J Pharmacol 660(2–3):275–282

    PubMed  CAS  Google Scholar 

  93. Kinnula VL (2005) Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax 60:693–700

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Shinde A, Ganu J, Naik P (2012) Effect of free radicals & antioxidants on oxidative stress: a review. J Dent Allied Sci 1(2):63–66

    Google Scholar 

  95. Leo MA, Heunks PN, Dekhuijzen R (2000) Respiratory muscle function and free radicals: from cell to COPD. Thorax 55:704–716

    Google Scholar 

  96. Meydani SN, Han SN, Hamer DH (2004) Vitamin E and respiratory infection in the elderly. Ann N Y Acad Sci 1031:214–222

    PubMed  CAS  Google Scholar 

  97. DeMichele SJ et al (2006) A nutritional strategy to improve oxygenation and decrease morbidity in patients who have acute respiratory distress syndrome. Respir Care Clin N Am 12(4):547–566

    PubMed  Google Scholar 

  98. DeMichele SJ, Wood SM, Wennberg AK (2012) Manipulating antioxidant intake in asthma: a randomized controlled trial. Am J Clin Nutr 96(3):534–543

    Google Scholar 

  99. Stephent T (2008) Pathogenesis of Asthma. Clin Exp Allergy 38(6):872–897

    Google Scholar 

  100. Tonelli AR, Haserodt S, Aytekin M (2013) Nitric oxide deficiency in pulmonary hypertension: Pathobiology and implications for therapy. Pulm Circ 3(1):20–30

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Gitto E, Pellegrino S, Gitto P et al (2009) Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin. J Pineal Res 46(2):128–139

    PubMed  CAS  Google Scholar 

  102. Duijvestijn YC, Mourdi N, Smucny J et al (2009) Acetylcysteine and carbocysteine for acute upper and lower respiratory tract infections in paediatric patients without chronic broncho-pulmonary disease. Cochrane Database Syst Rev 1, CD003124

    PubMed  Google Scholar 

  103. Nash EF, Stephenson A, Ratjen F et al (2009) Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis. Cochrane Database Syst Rev 1, CD007168

    PubMed  Google Scholar 

  104. Singer P, Shapiro H (2009) Enteral omega-3 in acute respiratory distress syndrome. Curr Opin Clin Nutr Metab Care 12(2):123–128

    PubMed  CAS  Google Scholar 

  105. Bosma KJ, Taneja R, Lewis JF (2010) Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 70(10):1255–1282

    PubMed  CAS  Google Scholar 

  106. Mitev D, Gradeva H, Stoyanova Z et al (2010) Evaluation of thiol compounds and lipid peroxidative products in plasma of patients with COPD. Trakia J Sci 8(suppl 2):306–314

    Google Scholar 

  107. Smit HA (2001) Chronic obstructive pulmonary disease, asthma and protective effects of food intake: from hypothesis to evidence? Respir Res 2:261–264

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286(3):R431–R444

    PubMed  CAS  Google Scholar 

  109. Dambrova M, Baumane L, Kalvinsh I et al (2000) Improved method for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing. Biochem Biophys Res Commun 275:895–898

    PubMed  CAS  Google Scholar 

  110. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynoneal. Methods Enzymol 186:407–421

    PubMed  CAS  Google Scholar 

  111. Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    PubMed  CAS  Google Scholar 

  112. Aberti A, Bolognini L, Carratelli M et al (1997) Assessing oxidative stress with the D-Romstest. Some mechanistic consideration. Proceedings of the SFRR summer meeting, Padua, pp 82–83

    Google Scholar 

  113. Camera E, Picardo M (2002) Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J Chromatogr B Analyt Technol Biomed Life Sci 781(1–2):181–206

    PubMed  CAS  Google Scholar 

  114. Tsikas D (2005) Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res 39(8):797–815

    PubMed  CAS  Google Scholar 

  115. Everett SA, Dennis MF, Tozer GM et al (1995) Nitric oxide in biological fluids: analysis of nitrite and nitrate by high-performance ion chromatography. J Chromatogr A 706(1–2):437–442

    PubMed  CAS  Google Scholar 

  116. Schwedhelm E (2005) Quantification of ADMA: analytical approaches. Vasc Med 10(suppl 1):S89–S95

    PubMed  Google Scholar 

  117. Siroka R, Trefil L, Rajdl D et al (2007) Asymmetric dimethylarginine—comparison of HPLC and ELISA methods. J Chromatogr B Analyt Technol Biomed Life Sci 850(1–2):586–587

    PubMed  CAS  Google Scholar 

  118. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    PubMed  CAS  Google Scholar 

  119. Said TM, Kattal N, Sharma RK et al (2003) Enhanced chemiluminescence assay vs. colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl 24(5):676–680

    PubMed  CAS  Google Scholar 

  120. Skiepko R, Zietkowski Z, Tomasiak MM et al (2006) Exhaled breath condensate in the assessment of airway inflammation. Przegl Lek 63(12):1321–1325

    PubMed  Google Scholar 

  121. Gokhan M, Kevin W, Robbins R et al (2001) Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med 164:731–737

    Google Scholar 

Download references

Acknowledgement

I gratefully acknowledge the help of my students Vivek Singh Malik, Harsimran Sidhu, and Divya Kapoor for their valuable support extended in preparation of the manuscript.

Conflict of Interest Author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Dhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhawan, V. (2014). Reactive Oxygen and Nitrogen Species: General Considerations. In: Ganguly, N., Jindal, S., Biswal, S., Barnes, P., Pawankar, R. (eds) Studies on Respiratory Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0497-6_2

Download citation

Publish with us

Policies and ethics