Pulmonary Arterial Hypertension and Oxidative Stress

  • Izabela Chrobak
  • Christina Mallarino Haeger
  • Marcy E. Maracle
  • Laura E. Fredenburgh
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Pulmonary arterial hypertension (PAH) is a severe disease characterized by pulmonary vascular remodeling, increased pulmonary vascular resistance (PVR), progressive arterial stiffening, and ultimately right ventricular (RV) failure and death. Despite state-of-the-art therapy and recent advances in our understanding of the molecular mechanisms and genetic determinants of disease, morbidity and mortality remain unacceptably high. Vascular remodeling in PAH is characterized by endothelial dysfunction with release of vasoactive mediators, growth factors, and cytokines; smooth muscle cell hyperplasia and hypertrophy with medial wall thickening; and adventitial fibroblast proliferation, extracellular matrix deposition, and myofibroblast differentiation. Growing evidence through animal and human studies suggests that oxidative stress plays a key role in the pathogenesis of PAH. Oxidative stress in PAH is associated with increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), decreased nitric oxide (NO) levels, and mitochondrial dysfunction. Dysregulation of ROS/RNS/NO homeostasis can impair vascular tone and lead to activation of antiapoptotic and pro-proliferative signaling pathways resulting in aberrant vascular remodeling in the lung. Increases in oxidative stress have been demonstrated in animal PH models and PAH patients, and therapies targeting oxidative stress have shown promise in animal models of PH. This chapter will examine the mechanisms of ROS generation in the pulmonary vasculature, review the available animal and human data on the role of oxidative stress in the pathobiology of PAH, and discuss potential therapies targeting oxidative stress for the treatment of patients with PAH.


Conflict of Interest

The authors report no conflict of interest.


  1. 1.
    Abe J, Takahashi M, Ishida M, Lee JD, Berk BC (1997) c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem 272(33):20389–20394PubMedGoogle Scholar
  2. 2.
    Abman SH (2013) Inhaled nitric oxide for the treatment of pulmonary arterial hypertension. Handb Exp Pharmacol 218:257–276PubMedGoogle Scholar
  3. 3.
    Agbani EO, Coats P, Wadsworth RM (2011) Acute hypoxia stimulates intracellular peroxynitrite formation associated with pulmonary artery smooth muscle cell proliferation. J Cardiovasc Pharmacol 57(5):584–588PubMedGoogle Scholar
  4. 4.
    Aggarwal S, Gross CM, Kumar S, Datar S, Oishi P, Kalkan G, Schreiber C, Fratz S, Fineman JR, Black SM (2011) Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: role of protein kinase G nitration. J Cell Physiol 226(12):3104–3113PubMedCentralPubMedGoogle Scholar
  5. 5.
    Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM (2013) Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 3(3):1011–1034PubMedGoogle Scholar
  6. 6.
    Ahmed MN, Zhang Y, Codipilly C, Zaghloul N, Patel D, Wolin M, Miller EJ (2012) Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med 18:38–46PubMedCentralPubMedGoogle Scholar
  7. 7.
    Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288PubMedGoogle Scholar
  8. 8.
    Alastalo TP, Li M, Perez Vde J, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121(9):3735–3746PubMedCentralPubMedGoogle Scholar
  9. 9.
    Aldred MA, Vijayakrishnan J, James V, Soubrier F, Gomez-Sanchez MA, Martensson G, Galie N, Manes A, Corris P, Simonneau G, Humbert M, Morrell NW, Trembath RC (2006) BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat 27(2):212–213PubMedGoogle Scholar
  10. 10.
    Almudever P, Milara J, De Diego A, Serrano-Mollar A, Xaubet A, Perez-Vizcaino F, Cogolludo A, Cortijo J (2013) Role of tetrahydrobiopterin in pulmonary vascular remodelling associated with pulmonary fibrosis. Thorax 68(10):938–948PubMedGoogle Scholar
  11. 11.
    Alva JA, Iruela-Arispe ML (2004) Notch signaling in vascular morphogenesis. Curr Opin Hematol 11(4):278–283PubMedGoogle Scholar
  12. 12.
    Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF (2003) Peroxisome proliferator-activated receptor gamma (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 92(10):1162–1169PubMedGoogle Scholar
  13. 13.
    Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL (2004) Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 110(15):2233–2240PubMedGoogle Scholar
  14. 14.
    Anthony S, Leiper J, Vallance P (2005) Endogenous production of nitric oxide synthase inhibitors. Vasc Med 10(suppl 1):S3–S9PubMedGoogle Scholar
  15. 15.
    Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121(24):2661–2671PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ardanaz N, Pagano PJ (2006) Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med 231(3):237–251Google Scholar
  17. 17.
    Arrigoni FI, Vallance P, Haworth SG, Leiper JM (2003) Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia. Circulation 107(8):1195–1201PubMedGoogle Scholar
  18. 18.
    Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips JA, Palomero T, Sumazin P, Kim HR, Talati MH, West J, Loyd JE, Chung WK (2012) Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 5(3):336–343PubMedCentralPubMedGoogle Scholar
  19. 19.
    Averna M, Stifanese R, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E (2008) Functional role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J Biol Chem 283(43):29069–29076PubMedCentralPubMedGoogle Scholar
  20. 20.
    Babior BM (2000) The NADPH oxidase of endothelial cells. IUBMB Life 50(4–5):267–269PubMedGoogle Scholar
  21. 21.
    Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 suppl):S55–S66PubMedGoogle Scholar
  22. 22.
    Bailey DM, Dehnert C, Luks AM, Menold E, Castell C, Schendler G, Faoro V, Gutowski M, Evans KA, Taudorf S, James PE, McEneny J, Young IS, Swenson ER, Mairbaurl H, Bartsch P, Berger MM (2010) High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability. J Physiol 588(pt 23):4837–4847PubMedCentralPubMedGoogle Scholar
  23. 23.
    Baillie JK, Thompson AA, Irving JB, Bates MG, Sutherland AI, Macnee W, Maxwell SR, Webb DJ (2009) Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial. QJM 102(5):341–348PubMedGoogle Scholar
  24. 24.
    Bakr A, Pak O, Taye A, Hamada F, Hemeida R, Janssen W, Gierhardt M, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, Witzenrath M, Brandes RP, Huang N, Cooke JP, Weissmann N, Sommer N (2013) Effects of dimethylarginine dimethylaminohydrolase-1 overexpression on the response of the pulmonary vasculature to hypoxia. Am J Respir Cell Mol Biol 49(3):491–500PubMedGoogle Scholar
  25. 25.
    Balanos GM, Dorrington KL, Robbins PA (2002) Desferrioxamine elevates pulmonary vascular resistance in humans: potential for involvement of HIF-1. J Appl Physiol 92(6):2501–2507PubMedGoogle Scholar
  26. 26.
    Baliga RS, Milsom AB, Ghosh SM, Trinder SL, Macallister RJ, Ahluwalia A, Hobbs AJ (2012) Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation 125(23):2922–2932PubMedCentralPubMedGoogle Scholar
  27. 27.
    Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-β1. Mol Endocrinol 10(9):1077–1083PubMedGoogle Scholar
  28. 28.
    Barnett CF, Hsue PY (2013) Human immunodeficiency virus-associated pulmonary arterial hypertension. Clin Chest Med 34(2):283–292PubMedGoogle Scholar
  29. 29.
    Barst RJ, Channick R, Ivy D, Goldstein B (2012) Clinical perspectives with long-term pulsed inhaled nitric oxide for the treatment of pulmonary arterial hypertension. Pulm Circ 2(2):139–147PubMedCentralPubMedGoogle Scholar
  30. 30.
    Bathoorn E, Slebos DJ, Postma DS, Koeter GH, van Oosterhout AJ, van der Toorn M, Boezen HM, Kerstjens HA (2007) Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 30(6):1131–1137PubMedGoogle Scholar
  31. 31.
    BelAiba RS, Djordjevic T, Bonello S, Flugel D, Hess J, Kietzmann T, Gorlach A (2004) Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 385(3–4):249–257PubMedGoogle Scholar
  32. 32.
    Belik J, Stevens D, Pan J, McIntyre BA, Kantores C, Ivanovska J, Xu EZ, Ibrahim C, Panama BK, Backx PH, McNamara PJ, Jankov RP (2010) Pulmonary vascular and cardiac effects of peroxynitrite decomposition in newborn rats. Free Radic Biol Med 49(8):1306–1314PubMedGoogle Scholar
  33. 33.
    Bierer R, Nitta CH, Friedman J, Codianni S, de Frutos S, Dominguez-Bautista JA, Howard TA, Resta TC, Bosc LV (2011) NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. Am J Physiol Lung Cell Mol Physiol 301(6):L872–L880PubMedCentralPubMedGoogle Scholar
  34. 34.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19PubMedCentralPubMedGoogle Scholar
  35. 35.
    Black SM, DeVol JM, Wedgwood S (2008) Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Physiol Cell Physiol 294(1):C345–C354PubMedPubMedCentralGoogle Scholar
  36. 36.
    Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA, Kreipe H, Laenger F, Jonigk D (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31(7):764–772PubMedGoogle Scholar
  37. 37.
    Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120(20):1951–1960PubMedGoogle Scholar
  38. 38.
    Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, Hoke NN, Kraskauskas D, Kasper M, Salloum FN, Voelkel NF (2010) Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 182(5):652–660PubMedGoogle Scholar
  39. 39.
    Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11(1):37–51PubMedGoogle Scholar
  40. 40.
    Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641PubMedGoogle Scholar
  41. 41.
    Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104(27):11418–11423PubMedCentralPubMedGoogle Scholar
  42. 42.
    Boo YC, Kim HJ, Song H, Fulton D, Sessa W, Jo H (2006) Coordinated regulation of endothelial nitric oxide synthase activity by phosphorylation and subcellular localization. Free Radic Biol Med 41(1):144–153PubMedGoogle Scholar
  43. 43.
    Boo YC, Sorescu GP, Bauer PM, Fulton D, Kemp BE, Harrison DG, Sessa WC, Jo H (2003) Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radic Biol Med 35(7):729–741PubMedGoogle Scholar
  44. 44.
    Bottje W, Enkvetchakul B, Moore R, McNew R (1995) Effect of α-tocopherol on antioxidants, lipid peroxidation, and the incidence of pulmonary hypertension syndrome (ascites) in broilers. Poult Sci 74(8):1356–1369PubMedGoogle Scholar
  45. 45.
    Bottje WG, Erf GF, Bersi TK, Wang S, Barnes D, Beers KW (1997) Effect of dietary dl-α-tocopherol on tissue α- and γ-tocopherol and pulmonary hypertension syndrome (ascites) in broilers. Poult Sci 76(11):1506–1512PubMedGoogle Scholar
  46. 46.
    Boulden BM, Widder JD, Allen JC, Smith DA, Al-Baldawi RN, Harrison DG, Dikalov SI, Jo H, Dudley SC Jr (2006) Early determinants of H2O2-induced endothelial dysfunction. Free Radic Biol Med 41(5):810–817PubMedCentralPubMedGoogle Scholar
  47. 47.
    Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169(6):764–769PubMedGoogle Scholar
  48. 48.
    Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92(6):683–691PubMedGoogle Scholar
  49. 49.
    Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O (2001) Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276(35):32663–32669PubMedGoogle Scholar
  50. 50.
    Broughton BR, Jernigan NL, Norton CE, Walker BR, Resta TC (2010) Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. Am J Physiol Lung Cell Mol Physiol 298(2):L232–L242PubMedCentralPubMedGoogle Scholar
  51. 51.
    Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26(1–2):3–31PubMedGoogle Scholar
  52. 52.
    Bruckdorfer R (2005) Nitric oxide in physiology and pathology. Mol Aspects Med 26(1–2):1–2Google Scholar
  53. 53.
    Campos AH, Wang W, Pollman MJ, Gibbons GH (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ Res 91(11):999–1006PubMedGoogle Scholar
  54. 54.
    Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111(3):290–300PubMedGoogle Scholar
  55. 55.
    Chan Y, Fish JE, D’Abreo C, Lin S, Robb GB, Teichert AM, Karantzoulis-Fegaras F, Keightley A, Steer BM, Marsden PA (2004) The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 279(33):35087–35100PubMedGoogle Scholar
  56. 56.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95(20):11715–11720PubMedCentralPubMedGoogle Scholar
  57. 57.
    Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138PubMedGoogle Scholar
  58. 58.
    Channick RN, Hoch RC, Newhart JW, Johnson FW, Smith CM (1994) Improvement in pulmonary hypertension and hypoxemia during nitric oxide inhalation in a patient with end-stage pulmonary fibrosis. Am J Respir Crit Care Med 149(3 pt 1):811–814PubMedGoogle Scholar
  59. 59.
    Chaouat A, Coulet F, Favre C, Simonneau G, Weitzenblum E, Soubrier F, Humbert M (2004) Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59(5):446–448PubMedCentralPubMedGoogle Scholar
  60. 60.
    Chatterjee A, Black SM, Catravas JD (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 49(4–6):134–140PubMedCentralPubMedGoogle Scholar
  61. 61.
    Chen B, Calvert AE, Cui H, Nelin LD (2009) Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase. Am J Physiol Lung Cell Mol Physiol 297(6):L1151–L1159PubMedGoogle Scholar
  62. 62.
    Chen KH, Lai YL, Chen MJ (2012) Oxygen radicals and substance P in perinatal hypoxia-exaggerated, monocrotaline-induced pulmonary hypertension. Chin J Physiol 55(2):82–90PubMedGoogle Scholar
  63. 63.
    Chen XJ, Cheng DY, Yang L, Xia XQ, Guan J (2006) Effect of breviscapine on fractalkine expression in chronic hypoxic rats. Chin Med J (Engl) 119(17):1465–1468Google Scholar
  64. 64.
    Chen Y, Wang R (2012) The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Respir Physiol Neurobiol 184(2):130–138PubMedGoogle Scholar
  65. 65.
    Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128(5):3205–3211PubMedGoogle Scholar
  66. 66.
    Cheng TH, Shih NL, Chen SY, Loh SH, Cheng PY, Tsai CS, Liu SH, Wang DL, Chen JJ (2001) Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol 33(10):1805–1814PubMedGoogle Scholar
  67. 67.
    Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG (2013) IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 304(2):L112–L124PubMedCentralPubMedGoogle Scholar
  68. 68.
    Chun C, Yang W, Xueding C, Qi Z, Xiaoying H, Honglei X, Fangyou Y, Chan C, Yuanyuan L, Weixi Z, Dan Y, Zhoucang Z, Lehe Y, Cheng D, Liangxing W (2012) Resveratrol downregulates acute pulmonary thromboembolism-induced pulmonary artery hypertension via p38 mitogen-activated protein kinase and monocyte chemoattractant protein-1 signaling in rats. Life Sci 90(19–20):721–727PubMedGoogle Scholar
  69. 69.
    Church JE, Fulton D (2006) Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J Biol Chem 281(3):1477–1488PubMedGoogle Scholar
  70. 70.
    Cogolludo A, Frazziano G, Cobeno L, Moreno L, Lodi F, Villamor E, Tamargo J, Perez-Vizcaino F (2006) Role of reactive oxygen species in Kv channel inhibition and vasoconstriction induced by TP receptor activation in rat pulmonary arteries. Ann N Y Acad Sci 1091:41–51PubMedGoogle Scholar
  71. 71.
    Connolly MJ, Prieto-Lloret J, Becker S, Ward JP, Aaronson PI (2013) Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. J Physiol 591(pt 18):4473–4498PubMedGoogle Scholar
  72. 72.
    Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Luscher TF (2001) Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 21(4):496–502. doi: 10.1161/01.atv.21.4.496 PubMedGoogle Scholar
  73. 73.
    Cosentino F, Luscher TF (1999) Tetrahydrobiopterin and endothelial nitric oxide synthase activity. Cardiovasc Res 43(2):274–278PubMedGoogle Scholar
  74. 74.
    Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548PubMedCentralPubMedGoogle Scholar
  75. 75.
    Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke-Labesque F, Pison C (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164(6):1038–1042PubMedGoogle Scholar
  76. 76.
    Cracowski JL, Degano B, Chabot F, Labarere J, Schwedhelm E, Monneret D, Iuliano L, Schwebel C, Chaouat A, Reynaud-Gaubert M, Faure P, Maas R, Renversez JC, Cracowski C, Sitbon O, Yaici A, Simonneau G, Humbert M (2012) Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension. Chest 142(4):869–876PubMedGoogle Scholar
  77. 77.
    Crosswhite P, Sun Z (2010) Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens 28(2):201–212PubMedCentralPubMedGoogle Scholar
  78. 78.
    Crosswhite P, Sun Z (2013) Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension. Hypertension 61(3):585–592PubMedGoogle Scholar
  79. 79.
    Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G, de Cabo R, Mathew R, Wolin MS, Ungvari Z (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54(3):668–675PubMedCentralPubMedGoogle Scholar
  80. 80.
    Czaplinska M, Czepas J, Gwozdzinski K (2012) Structure, antioxidative and anticancer properties of flavonoids. Postepy Biochem 58(3):235–244PubMedGoogle Scholar
  81. 81.
    D’Alto M, Mahadevan VS (2012) Pulmonary arterial hypertension associated with congenital heart disease. Eur Respir Rev 21(126):328–337PubMedGoogle Scholar
  82. 82.
    Damico R, Zulueta JJ, Hassoun PM (2012) Pulmonary endothelial cell NOX. Am J Respir Cell Mol Biol 47(2):129–139PubMedGoogle Scholar
  83. 83.
    Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A (2011) Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J Biol Chem 286(32):28097–28110PubMedCentralPubMedGoogle Scholar
  84. 84.
    de Frutos S, Spangler R, Alo D, Bosc LV (2007) NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with α-actin up-regulation. J Biol Chem 282(20):15081–15089PubMedCentralPubMedGoogle Scholar
  85. 85.
    de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-β-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol 184(1):83–99PubMedCentralPubMedGoogle Scholar
  86. 86.
    de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35(pt 5):1156–1160PubMedGoogle Scholar
  87. 87.
    Demiryurek AT, Karamsetty MR, McPhaden AR, Wadsworth RM, Kane KA, MacLean MR (2000) Accumulation of nitrotyrosine correlates with endothelial NO synthase in pulmonary resistance arteries during chronic hypoxia in the rat. Pulm Pharmacol Ther 13(4):157–165PubMedGoogle Scholar
  88. 88.
    Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297(4):L596–L607PubMedCentralPubMedGoogle Scholar
  89. 89.
    Deora AA, Win T, Vanhaesebroeck B, Lander HM (1998) A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to Ras by redox stress. J Biol Chem 273(45):29923–29928PubMedGoogle Scholar
  90. 90.
    Desai AA, Machado RF (2011) Diagnostic and therapeutic algorithm for pulmonary arterial hypertension. Pulm Circ 1(1):122–124PubMedCentralPubMedGoogle Scholar
  91. 91.
    Dewachter L, Adnot S, Fadel E, Humbert M, Maitre B, Barlier-Mur AM, Simonneau G, Hamon M, Naeije R, Eddahibi S (2006) Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med 174(9):1025–1033PubMedGoogle Scholar
  92. 92.
    Dickinson MG, Bartelds B, Molema G, Borgdorff MA, Boersma B, Takens J, Weij M, Wichers P, Sietsma H, Berger RM (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179(5):2199–2209PubMedCentralPubMedGoogle Scholar
  93. 93.
    Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107(1):106–116PubMedCentralPubMedGoogle Scholar
  94. 94.
    Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114(8):1117–1127PubMedCentralPubMedGoogle Scholar
  95. 95.
    Dolinay T, Szilasi M, Liu M, Choi AM (2004) Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 170(6):613–620PubMedGoogle Scholar
  96. 96.
    Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735PubMedCentralPubMedGoogle Scholar
  97. 97.
    Dorfmuller P, Chaumais MC, Giannakouli M, Durand-Gasselin I, Raymond N, Fadel E, Mercier O, Charlotte F, Montani D, Simonneau G, Humbert M, Perros F (2011) Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respir Res 12:119PubMedCentralPubMedGoogle Scholar
  98. 98.
    Dromparis P, Michelakis ED (2013) Mitochondria in vascular health and disease. Annu Rev Physiol 75:95–126PubMedGoogle Scholar
  99. 99.
    Dromparis P, Sutendra G, Michelakis ED (2010) The role of mitochondria in pulmonary vascular remodeling. J Mol Med 88(10):1003–1010PubMedGoogle Scholar
  100. 100.
    Dschietzig T, Richter C, Bartsch C, Bohme C, Heinze D, Ott F, Zartnack F, Baumann G, Stangl K (2001) Flow-induced pressure differentially regulates endothelin-1, urotensin II, adrenomedullin, and relaxin in pulmonary vascular endothelium. Biochem Biophys Res Commun 289(1):245–251PubMedGoogle Scholar
  101. 101.
    Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826(2):443–457PubMedCentralPubMedGoogle Scholar
  102. 102.
    Du J, Hui Y, Cheung Y, Bin G, Jiang H, Chen X, Tang C (2004) The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels 19(2):75–80PubMedGoogle Scholar
  103. 103.
    Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516(pt 1):1–17PubMedCentralPubMedGoogle Scholar
  104. 104.
    Duffels MG, Engelfriet PM, Berger RM, van Loon RL, Hoendermis E, Vriend JW, van der Velde ET, Bresser P, Mulder BJ (2007) Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol 120(2):198–204PubMedGoogle Scholar
  105. 105.
    Durante W (2013) Role of arginase in vessel wall remodeling. Front Immunol 4:111PubMedCentralPubMedGoogle Scholar
  106. 106.
    Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273(19):11619–11624PubMedGoogle Scholar
  107. 107.
    Eba S, Hoshikawa Y, Moriguchi T, Mitsuishi Y, Satoh H, Ishida K, Watanabe T, Shimizu T, Shimokawa H, Okada Y, Yamamoto M, Kondo T (2013) The nuclear factor erythroid 2-related factor 2 activator oltipraz attenuates chronic hypoxia-induced cardiopulmonary alterations in mice. Am J Respir Cell Mol Biol 49(2):324–333PubMedGoogle Scholar
  108. 108.
    Elmedal B, de Dam MY, Mulvany MJ, Simonsen U (2004) The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol 141(1):105–113PubMedCentralPubMedGoogle Scholar
  109. 109.
    Elmhurst JL, Betti PA, Rangachari PK (1997) Intestinal effects of isoprostanes: evidence for the involvement of prostanoid EP and TP receptors. J Pharmacol Exp Ther 282(3):1198–1205PubMedGoogle Scholar
  110. 110.
    Ergul S, Brunson CY, Hutchinson J, Tawfik A, Kutlar A, Webb RC, Ergul A (2004) Vasoactive factors in sickle cell disease: in vitro evidence for endothelin-1-mediated vasoconstriction. Am J Hematol 76(3):245–251PubMedGoogle Scholar
  111. 111.
    Fagan KA, Fouty BW, Tyler RC, Morris KG Jr, Hepler LK, Sato K, LeCras TD, Abman SH, Weinberger HD, Huang PL, McMurtry IF, Rodman DM (1999) The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 103(2):291–299PubMedCentralPubMedGoogle Scholar
  112. 112.
    Fagan KA, Morrissey B, Fouty BW, Sato K, Harral JW, Morris KG Jr, Hoedt-Miller M, Vidmar S, McMurtry IF, Rodman DM (2001) Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir Res 2(5):306–313PubMedCentralPubMedGoogle Scholar
  113. 113.
    Fagan KA, Tyler RC, Sato K, Fouty BW, Morris KG Jr, Huang PL, McMurtry IF, Rodman DM (1999) Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am J Physiol 277(3 pt 1):L472–L478PubMedGoogle Scholar
  114. 114.
    Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351(16):1655–1665PubMedGoogle Scholar
  115. 115.
    Farrow KN, Lakshminrusimha S, Reda WJ, Wedgwood S, Czech L, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295(6):L979–L987PubMedCentralPubMedGoogle Scholar
  116. 116.
    Fessel JP, Flynn CR, Robinson LJ, Penner NL, Gladson S, Kang CJ, Wasserman DH, Hemnes AR, West JD (2013) Hyperoxia synergizes with mutant bone morphogenic protein receptor 2 to cause metabolic stress, oxidant injury, and pulmonary hypertension. Am J Respir Cell Mol Biol 49(5):778–787PubMedGoogle Scholar
  117. 117.
    Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor 1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176(3):1130–1138PubMedCentralPubMedGoogle Scholar
  118. 118.
    Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2013) Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. Antioxid Redox Signal 18(14):1727–1738PubMedGoogle Scholar
  119. 119.
    Fioretto JR, Campos FJ, Ronchi CF, Ferreira AL, Kurokawa CS, Carpi MF, Moraes MA, Bonatto RC, Defaveri J, Yeum KJ (2012) Effects of inhaled nitric oxide on oxidative stress and histopathological and inflammatory lung injury in a saline-lavaged rabbit model of acute lung injury. Respir Care 57(2):273–281PubMedGoogle Scholar
  120. 120.
    Francis BN, Wilkins MR, Zhao L (2010) Tetrahydrobiopterin and the regulation of hypoxic pulmonary vasoconstriction. Eur Respir J 36(2):323–330PubMedGoogle Scholar
  121. 121.
    Francis RC, Vaporidi K, Bloch KD, Ichinose F, Zapol WM (2011) Protective and detrimental effects of sodium sulfide and hydrogen sulfide in murine ventilator-induced lung injury. Anesthesiology 115(5):1012–1021PubMedCentralPubMedGoogle Scholar
  122. 122.
    Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R, Muller B (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148(5):714–723PubMedCentralPubMedGoogle Scholar
  123. 123.
    Fritz H, Kennedy D, Fergusson D, Fernandes R, Doucette S, Cooley K, Seely A, Sagar S, Wong R, Seely D (2011) Vitamin A and retinoid derivatives for lung cancer: a systematic review and meta analysis. PLoS One 6(6):e21107PubMedCentralPubMedGoogle Scholar
  124. 124.
    Gabrielli LA, Castro PF, Godoy I, Mellado R, Bourge RC, Alcaino H, Chiong M, Greig D, Verdejo HE, Navarro M, Lopez R, Toro B, Quiroga C, Diaz-Araya G, Lavandero S, Garcia L (2011) Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. J Card Fail 17(12):1012–1017PubMedGoogle Scholar
  125. 125.
    Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537Google Scholar
  126. 126.
    Gan C, Lankhaar JW, Marcus JT, Westerhof N, Marques KM, Bronzwaer JG, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2006) Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 290(4):H1528–H1533PubMedGoogle Scholar
  127. 127.
    Gao H, Chen C, Huang S, Li B (2012) Quercetin attenuates the progression of monocrotaline-induced pulmonary hypertension in rats. J Biomed Res 26(2):98–102PubMedCentralPubMedGoogle Scholar
  128. 128.
    Gentile MA (2011) Inhaled medical gases: more to breathe than oxygen. Respir Care 56(9):1341–1357; discussion 1357–1349PubMedGoogle Scholar
  129. 129.
    Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328(24):1732–1739PubMedGoogle Scholar
  130. 130.
    Gielis JF, Lin JY, Wingler K, Van Schil PE, Schmidt HH, Moens AL (2011) Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free Radic Biol Med 50(7):765–776PubMedGoogle Scholar
  131. 131.
    Golpon HA, Geraci MW, Moore MD, Miller HL, Miller GJ, Tuder RM, Voelkel NF (2001) HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 158(3):955–966PubMedCentralPubMedGoogle Scholar
  132. 132.
    Gorenflo M, Zheng C, Werle E, Fiehn W, Ulmer HE (2001) Plasma levels of asymmetrical dimethyl-L-arginine in patients with congenital heart disease and pulmonary hypertension. J Cardiovasc Pharmacol 37(4):489–492PubMedGoogle Scholar
  133. 133.
    Graham BB, Bandeira AP, Morrell NW, Butrous G, Tuder RM (2010) Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137(6 suppl):20S–29SPubMedGoogle Scholar
  134. 134.
    Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54(2):322–328PubMedGoogle Scholar
  135. 135.
    Grobe AC, Wells SM, Benavidez E, Oishi P, Azakie A, Fineman JR, Black SM (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 290(6):L1069–L1077PubMedGoogle Scholar
  136. 136.
    Guignabert C, Alvira CM, Alastalo TP, Sawada H, Hansmann G, Zhao M, Wang L, El-Bizri N, Rabinovitch M (2009) Tie2-mediated loss of peroxisome proliferator-activated receptor-γ in mice causes PDGF receptor-β-dependent pulmonary arterial muscularization. Am J Physiol Lung Cell Mol Physiol 297(6):L1082–L1090PubMedCentralPubMedGoogle Scholar
  137. 137.
    Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6):401–408PubMedGoogle Scholar
  138. 138.
    Hachulla E, Gressin V, Guillevin L, Carpentier P, Diot E, Sibilia J, Kahan A, Cabane J, Frances C, Launay D, Mouthon L, Allanore Y, Tiev KP, Clerson P, de Groote P, Humbert M (2005) Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum 52(12):3792–3800PubMedGoogle Scholar
  139. 139.
    Hamon I, Fresson J, Nicolas MB, Buchweiller MC, Franck P, Hascoet JM (2005) Early inhaled nitric oxide improves oxidative balance in very preterm infants. Pediatr Res 57(5 pt 1):637–643PubMedGoogle Scholar
  140. 140.
    Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M (2008) An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118(5):1846–1857PubMedCentralPubMedGoogle Scholar
  141. 141.
    Harrison RE, Berger R, Haworth SG, Tulloh R, Mache CJ, Morrell NW, Aldred MA, Trembath RC (2005) Transforming growth factor-β receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111(4):435–441PubMedGoogle Scholar
  142. 142.
    Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, Elliott CG, Robbins IM, Olschewski H, McLaughlin V, Gruenig E, Kermeen F, Halme M, Raisanen-Sokolowski A, Laitinen T, Morrell NW, Trembath RC (2003) Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet 40(12):865–871PubMedCentralPubMedGoogle Scholar
  143. 143.
    Hartney T, Birari R, Venkataraman S, Villegas L, Martinez M, Black SM, Stenmark KR, Nozik-Grayck E (2011) Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One 6(11):e27531PubMedCentralPubMedGoogle Scholar
  144. 144.
    Haven CA, Olson JW, Arcot SS, Gillespie MN (1992) Polyamine transport and ornithine decarboxylase activity in hypoxic pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 7(3):286–292PubMedGoogle Scholar
  145. 145.
    Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838(2):532–545Google Scholar
  146. 146.
    Herrmann J, Samee S, Chade A, Rodriguez Porcel M, Lerman LO, Lerman A (2005) Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling. Arterioscler Thromb Vasc Biol 25(2):447–453PubMedGoogle Scholar
  147. 147.
    Hinderliter AL, Willis PW, Long WA, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Koch G, Li S, Clayton LM, Jöbsis MM, Crow JW (2003) Frequency and severity of tricuspid regurgitation determined by Doppler echocardiography in primary pulmonary hypertension. Am J Cardiol 91(8):1033–1037PubMedGoogle Scholar
  148. 148.
    Hoeper MM, Mayer E, Simonneau G, Rubin LJ (2006) Chronic thromboembolic pulmonary hypertension. Circulation 113(16):2011–2020PubMedGoogle Scholar
  149. 149.
    Hoetzel A, Dolinay T, Vallbracht S, Zhang Y, Kim HP, Ifedigbo E, Alber S, Kaynar AM, Schmidt R, Ryter SW, Choi AM (2008) Carbon monoxide protects against ventilator-induced lung injury via PPAR-γ and inhibition of Egr-1. Am J Respir Crit Care Med 177(11):1223–1232PubMedCentralPubMedGoogle Scholar
  150. 150.
    Homma N, Morio Y, Takahashi H, Yamamoto A, Suzuki T, Sato K, Muramatsu M, Fukuchi Y (2006) Genistein, a phytoestrogen, attenuates monocrotaline-induced pulmonary hypertension. Respiration 73(1):105–112PubMedGoogle Scholar
  151. 151.
    Hoshikawa Y, Ono S, Suzuki S, Tanita T, Chida M, Song C, Noda M, Tabata T, Voelkel NF, Fujimura S (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90(4):1299–1306PubMedGoogle Scholar
  152. 152.
    Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531PubMedGoogle Scholar
  153. 153.
    Howard LS, Watson GM, Wharton J, Rhodes CJ, Chan K, Khengar R, Robbins PA, Kiely DG, Condliffe R, Elliott CA, Pepke-Zaba J, Sheares K, Morrell NW, Davies R, Ashby D, Gibbs JS, Wilkins MR (2013) Supplementation of iron in pulmonary hypertension: rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension. Pulm Circ 3(1):100–107PubMedCentralPubMedGoogle Scholar
  154. 154.
    Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, Schimel DM, Cochard AE, Wang X, Schechter AN, Noguchi CT, Gladwin MT (2007) Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood 109(7):3088–3098PubMedCentralPubMedGoogle Scholar
  155. 155.
    Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang X (2010) Effects of mitochondrial potassium channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 42(6):661–666PubMedGoogle Scholar
  156. 156.
    Hu W, Jin R, Zhang J, You T, Peng Z, Ge X, Bronson RT, Halperin JA, Loscalzo J, Qin X (2010) The critical roles of platelet activation and reduced NO bioavailability in fatal pulmonary arterial hypertension in a murine hemolysis model. Blood 116(9):1613–1622PubMedCentralPubMedGoogle Scholar
  157. 157.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377(6546):239–242PubMedGoogle Scholar
  158. 158.
    Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier J-F, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G (2006) Pulmonary arterial hypertension in France. Am J Respir Crit Care Med 173(9):1023–1030PubMedGoogle Scholar
  159. 159.
    Hyduk A, Croft JB, Ayala C, Zheng K, Zheng ZJ, Mensah GA (2005) Pulmonary hypertension surveillance–United States, 1980–2002. Morb Mortal Wkly Rep Surveill Summ 54(5):1–28Google Scholar
  160. 160.
    Ichinose F, Roberts JD Jr, Zapol WM (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109(25):3106–3111PubMedGoogle Scholar
  161. 161.
    Iqbal M, Cawthon D, Wideman RF Jr, Bottje WG (2001) Lung mitochondrial dysfunction in pulmonary hypertension syndrome. II. Oxidative stress and inability to improve function with repeated additions of adenosine diphosphate. Poult Sci 80(5):656–665PubMedGoogle Scholar
  162. 162.
    Irodova NL, Lankin VZ, Konovalova GK, Kochetov AG, Chazova IE (2002) Oxidative stress in patients with primary pulmonary hypertension. Bull Exp Biol Med 133(6):580–582PubMedGoogle Scholar
  163. 163.
    Irrcher I, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296(1):C116–C123PubMedGoogle Scholar
  164. 164.
    Ivy DD, Parker D, Doran A, Parker D, Kinsella JP, Abman SH (2003) Acute hemodynamic effects and home therapy using a novel pulsed nasal nitric oxide delivery system in children and young adults with pulmonary hypertension. Am J Cardiol 92(7):886–890PubMedGoogle Scholar
  165. 165.
    Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207PubMedGoogle Scholar
  166. 166.
    Jankov RP, Belcastro R, Ovcina E, Lee J, Massaeli H, Lye SJ, Tanswell AK (2002) Thromboxane A2 receptors mediate pulmonary hypertension in 60 % oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism. Am J Respir Crit Care Med 166(2):208–214PubMedGoogle Scholar
  167. 167.
    Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294(2):L233–L245PubMedGoogle Scholar
  168. 168.
    Janssen LJ (2008) Isoprostanes and lung vascular pathology. Am J Respir Cell Mol Biol 39(4):383–389PubMedGoogle Scholar
  169. 169.
    Janssen LJ, Tazzeo T (2002) Involvement of TP and EP3 receptors in vasoconstrictor responses to isoprostanes in pulmonary vasculature. J Pharmacol Exp Ther 301(3):1060–1066PubMedGoogle Scholar
  170. 170.
    Jerkic M, Kabir MG, Davies A, Yu LX, McIntyre BA, Husain NW, Enomoto M, Sotov V, Husain M, Henkelman M, Belik J, Letarte M (2011) Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress. Cardiovasc Res 92(3):375–384PubMedGoogle Scholar
  171. 171.
    Jernigan NL, Walker BR, Resta TC (2008) Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 295(3):L515–L529PubMedCentralPubMedGoogle Scholar
  172. 172.
    Jin HF, Du SX, Zhao X, Wei HL, Wang YF, Liang YF, Tang CS, Du JB (2008) Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. Acta Pharmacol Sin 29(10):1157–1166PubMedGoogle Scholar
  173. 173.
    Jin Y, Calvert TJ, Chen B, Chicoine LG, Joshi M, Bauer JA, Liu Y, Nelin LD (2010) Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. Am J Physiol Heart Circ Physiol 298(5):H1518–H1528PubMedCentralPubMedGoogle Scholar
  174. 174.
    Jones R, Jacobson M, Steudel W (1999) α-smooth-muscle actin and microvascular precursor smooth-muscle cells in pulmonary hypertension. Am J Respir Cell Mol Biol 20(4):582–594PubMedGoogle Scholar
  175. 175.
    Joppa P, Petrasova D, Stancak B, Dorkova Z, Tkacova R (2007) Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 119(13–14):428–434PubMedGoogle Scholar
  176. 176.
    Junqueira FP, Lima CM, Coutinho AC Jr, Parente DB, Bittencourt LK, Bessa LG, Domingues RC, Marchiori E (2012) Pulmonary arterial hypertension: an imaging review comparing MR pulmonary angiography and perfusion with multidetector CT angiography. Br J Radiol 85(1019):1446–1456PubMedCentralPubMedGoogle Scholar
  177. 177.
    Kamezaki F, Tasaki H, Yamashita K, Tsutsui M, Koide S, Nakata S, Tanimoto A, Okazaki M, Sasaguri Y, Adachi T, Otsuji Y (2008) Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 177(2):219–226PubMedGoogle Scholar
  178. 178.
    Kantores C, McNamara PJ, Teixeira L, Engelberts D, Murthy P, Kavanagh BP, Jankov RP (2006) Therapeutic hypercapnia prevents chronic hypoxia-induced pulmonary hypertension in the newborn rat. Am J Physiol Lung Cell Mol Physiol 291(5):L912–L922PubMedGoogle Scholar
  179. 179.
    Karuppiah K, Druhan LJ, Chen CA, Smith T, Zweier JL, Sessa WC, Cardounel AJ (2011) Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism. Am J Physiol Heart Circ Physiol 301(3):H903–H911PubMedCentralPubMedGoogle Scholar
  180. 180.
    Katusic ZS (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281(3):H981–H986PubMedGoogle Scholar
  181. 181.
    Ke Q, Li J, Ding J, Ding M, Wang L, Liu B, Costa M, Huang C (2006) Essential role of ROS-mediated NFAT activation in TNF-α induction by crystalline silica exposure. Am J Physiol Lung Cell Mol Physiol 291(2):L257–L264PubMedGoogle Scholar
  182. 182.
    Khajali F, Fahimi S (2010) Influence of dietary fat source and supplementary α-tocopheryl acetate on pulmonary hypertension and lipid peroxidation in broilers. J Anim Physiol Anim Nutr 94(6):767–772Google Scholar
  183. 183.
    Khoo JP, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, Wilkins MR, Channon KM (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111(16):2126–2133PubMedGoogle Scholar
  184. 184.
    Klemm DJ, Majka SM, Crossno JT Jr, Psilas JC, Reusch JE, Garat CV (2011) Reduction of reactive oxygen species prevents hypoxia-induced CREB depletion in pulmonary artery smooth muscle cells. J Cardiovasc Pharmacol 58(2):181–191PubMedCentralPubMedGoogle Scholar
  185. 185.
    Knock GA, Snetkov VA, Shaifta Y, Connolly M, Drndarski S, Noah A, Pourmahram GE, Becker S, Aaronson PI, Ward JP (2009) Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radic Biol Med 46(5):633–642PubMedGoogle Scholar
  186. 186.
    Kobs RW, Chesler NC (2006) The mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS. Biomech Model Mechanobiol 5(4):217–225PubMedGoogle Scholar
  187. 187.
    Kohmoto J, Nakao A, Kaizu T, Tsung A, Ikeda A, Tomiyama K, Billiar TR, Choi AM, Murase N, McCurry KR (2006) Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 140(2):179–185PubMedGoogle Scholar
  188. 188.
    Kohmoto J, Nakao A, Stolz DB, Kaizu T, Tsung A, Ikeda A, Shimizu H, Takahashi T, Tomiyama K, Sugimoto R, Choi AM, Billiar TR, Murase N, McCurry KR (2007) Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant 7(10):2279–2290PubMedGoogle Scholar
  189. 189.
    Kolleck I, Sinha P, Rustow B (2002) Vitamin E as an antioxidant of the lung: mechanisms of vitamin E delivery to alveolar type II cells. Am J Respir Crit Care Med 166(12 pt 2):S62–S66PubMedGoogle Scholar
  190. 190.
    Koubsky K, Durisova J, Mikova D, Herget J (2013) Chronic hypoxia inhibits tetrahydrobiopterin-induced NO production in rat lungs. Respir Physiol Neurobiol 185(3):547–552PubMedGoogle Scholar
  191. 191.
    Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86(2):670–674PubMedCentralPubMedGoogle Scholar
  192. 192.
    Kouyoumdjian C, Adnot S, Levame M, Eddahibi S, Bousbaa H, Raffestin B (1994) Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. J Clin Invest 94(2):578–584PubMedCentralPubMedGoogle Scholar
  193. 193.
    Kuijpers MH, Gruys E (1984) Spontaneous hypertension and hypertensive renal disease in the fawn-hooded rat. Br J Exp Pathol 65(2):181–190PubMedCentralPubMedGoogle Scholar
  194. 194.
    Kukreja RC, Xi L (2007) eNOS phosphorylation: a pivotal molecular switch in vasodilation and cardioprotection? J Mol Cell Cardiol 42(2):280–282PubMedCentralPubMedGoogle Scholar
  195. 195.
    Kulshreshtha R, Davuluri RV, Calin GA, Ivan M (2008) A microRNA component of the hypoxic response. Cell Death Differ 15(4):667–671PubMedGoogle Scholar
  196. 196.
    Kunuthur SP, Milliken PH, Gibson CL, Suckling CJ, Wadsworth RM (2011) Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties. Eur J Pharmacol 650(1):371–377PubMedGoogle Scholar
  197. 197.
    Kupari M, Rapola J (2012) Reversible pulmonary hypertension associated with vitamin C deficiency. Chest 142(1):225–227PubMedGoogle Scholar
  198. 198.
    Lachmanová V, Hnilicková O, Povýsilová V, Hampl V, Herget J (2005) N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 77(2):175–182PubMedGoogle Scholar
  199. 199.
    Lai YL, Wu HD, Chen CF (1998) Antioxidants attenuate chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol 32(5):714–720PubMedGoogle Scholar
  200. 200.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209PubMedCentralPubMedGoogle Scholar
  201. 201.
    Lane KL, Talati M, Austin E, Hemnes AR, Johnson JA, Fessel JP, Blackwell T, Mernaugh RL, Robinson L, Fike C, Roberts LJ II, West J (2011) Oxidative injury is a common consequence of BMPR2 mutations. Pulm Circ 1(1):72–83PubMedCentralPubMedGoogle Scholar
  202. 202.
    Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93(18):9782–9787PubMedCentralPubMedGoogle Scholar
  203. 203.
    Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, Feghali-Bostwick C, Ryter SW, Kim HP, Rabinovitch M, Choi AM (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183(5):649–658PubMedCentralPubMedGoogle Scholar
  204. 204.
    Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O’Hara B, Rossiter S, Anthony S, Madhani M, Selwood D, Smith C, Wojciak-Stothard B, Rudiger A, Stidwill R, McDonald NQ, Vallance P (2007) Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med 13(2):198–203PubMedGoogle Scholar
  205. 205.
    Li H, Meininger CJ, Kelly KA, Hawker JR Jr, Morris SM Jr, Wu G (2002) Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol Regul Integr Comp Physiol 282(1):R64–R69PubMedGoogle Scholar
  206. 206.
    Li JW, Chen P, Guan XQ, Gong YS, Yang PL (2008) Inhibition of puerarin on pulmonary hypertension in rats with hypoxia and hypercapnia. China J Chin Mater Med 33(5):544–549Google Scholar
  207. 207.
    Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N, Grimminger F, Seeger W, Rose F, Hanze J (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10(10):1687–1698PubMedGoogle Scholar
  208. 208.
    Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL (2001) H2O2-induced O2 production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276(31):29251–29256PubMedPubMedCentralGoogle Scholar
  209. 209.
    Lin MJ, Yang XR, Cao YN, Sham JS (2007) Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292(6):L1598–L1608PubMedGoogle Scholar
  210. 210.
    Liu JQ, Folz RJ (2004) Extracellular superoxide enhances 5-HT-induced murine pulmonary artery vasoconstriction. Am J Physiol Lung Cell Mol Physiol 287(1):L111–L118PubMedGoogle Scholar
  211. 211.
    Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290(1):L2–L10PubMedGoogle Scholar
  212. 212.
    Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77(3):638–643PubMedGoogle Scholar
  213. 213.
    Longo DL, Harrison TR (2012) Harrison’s principles of internal medicine, 18th edn. McGraw-Hill, New YorkGoogle Scholar
  214. 214.
    Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Perez-Vizcaino F (2008) Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 295(5):L727–L732PubMedGoogle Scholar
  215. 215.
    Lopez-Ongil S, Saura M, Zaragoza C, Gonzalez-Santiago L, Rodriguez-Puyol M, Lowenstein CJ, Rodriguez-Puyol D (2002) Hydrogen peroxide regulation of bovine endothelin-converting enzyme-1. Free Radic Biol Med 32(5):406–413PubMedGoogle Scholar
  216. 216.
    Lorenzoni AG, Ruiz-Feria CA (2006) Effects of vitamin E and L-arginine on cardiopulmonary function and ascites parameters in broiler chickens reared under subnormal temperatures. Poult Sci 85(12):2241–2250PubMedGoogle Scholar
  217. 217.
    Lu MF, Xiao ZT, Zhang HY (2013) Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem Biophys Res Commun 434(4):701–704PubMedGoogle Scholar
  218. 218.
    Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA, Soubrier F, Trembath RC, Chung WK (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 suppl):S32–S42PubMedCentralPubMedGoogle Scholar
  219. 219.
    Machado RF, Gladwin MT (2010) Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective. Chest 137(6 suppl):30S–38SPubMedCentralPubMedGoogle Scholar
  220. 220.
    Madigan M, Zuckerbraun B (2013) Therapeutic potential of the nitrite-generated NO pathway in vascular dysfunction. Front Immunol 4:174PubMedCentralPubMedGoogle Scholar
  221. 221.
    Malenfant S, Neyron AS, Paulin R, Potus F, Meloche J, Provencher S, Bonnet S (2013) Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 3(2):278–293PubMedCentralPubMedGoogle Scholar
  222. 222.
    Maniatis NA, Shinin V, Schraufnagel DE, Okada S, Vogel SM, Malik AB, Minshall RD (2008) Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1−/− mice. Am J Physiol Lung Cell Mol Physiol 294(5):L865–L873PubMedGoogle Scholar
  223. 223.
    Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, Vonk-Noordegraaf A (2008) Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 51(7):750–757PubMedGoogle Scholar
  224. 224.
    Maron BA, Tang SS, Loscalzo J (2013) S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 18(3):270–287PubMedCentralPubMedGoogle Scholar
  225. 225.
    Masri FA, Comhair SA, Dostanic-Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC (2008) Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 1(2):99–106PubMedGoogle Scholar
  226. 226.
    Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-β1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289(2):L288–L289PubMedGoogle Scholar
  227. 227.
    Mata-Greenwood E, Meyrick B, Steinhorn RH, Fineman JR, Black SM (2003) Alterations in TGF-β1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 285(1):L209–L221PubMedGoogle Scholar
  228. 228.
    Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M (2012) Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension 60(2):425–430PubMedGoogle Scholar
  229. 229.
    Maunder RJ, Winn RK, Gleisner JM, Hildebrandt J, Harlan JM (1988) Effect of intravenous catalase on the pulmonary vascular response to endotoxemia in goats. J Appl Physiol 64(2):697–704PubMedGoogle Scholar
  230. 230.
    McGoon M, Gutterman D, Steen V, Barst R, McCrory DC, Fortin TA, Loyd JE, American College of Chest Physicians (2004) Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126(1 suppl):14S–34SPubMedGoogle Scholar
  231. 231.
    McKenzie JC, Clancy J Jr, Klein RM (1984) Autoradiographic analysis of cell proliferation and protein synthesis in the pulmonary trunk of rats during the early development of hypoxia-induced pulmonary hypertension. Blood Vessels 21(2):80–89PubMedGoogle Scholar
  232. 232.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, American College of Cardiology Foundation Task Force on Expert Consensus Documents, American Heart Association, American College of Chest Physicians, American Thoracic Society, Inc., Pulmonary Hypertension Association (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53(17):1573–1619PubMedGoogle Scholar
  233. 233.
    McMahon TJ, Ahearn GS, Moya MP, Gow AJ, Huang YC, Luchsinger BP, Nudelman R, Yan Y, Krichman AD, Bashore TM, Califf RM, Singel DJ, Piantadosi CA, Tapson VF, Stamler JS (2005) A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Natl Acad Sci U S A 102(41):14801–14806PubMedCentralPubMedGoogle Scholar
  234. 234.
    McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115(6):1479–1491PubMedCentralPubMedGoogle Scholar
  235. 235.
    McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95(8):830–840PubMedGoogle Scholar
  236. 236.
    Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay E, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S (2013) Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology. J Am Heart Assoc 2(1):e005157PubMedCentralPubMedGoogle Scholar
  237. 237.
    Mertens MT, Gertner E (2011) Rheumatic manifestations of scurvy: a report of three recent cases in a major urban center and a review. Semin Arthritis Rheum 41(2):286–290PubMedGoogle Scholar
  238. 238.
    Meyrick B, Reid L (1980) Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 100(1):151–178PubMedCentralPubMedGoogle Scholar
  239. 239.
    Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90(12):1307–1315PubMedGoogle Scholar
  240. 240.
    Michelakis ED, Thebaud B, Weir EK, Archer SL (2004) Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 37(6):1119–1136PubMedGoogle Scholar
  241. 241.
    Millatt LJ, Whitley GS, Li D, Leiper JM, Siragy HM, Carey RM, Johns RA (2003) Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation 108(12):1493–1498PubMedGoogle Scholar
  242. 242.
    Milligan SA, Hoeffel JM, Goldstein IM, Flick MR (1988) Effect of catalase on endotoxin-induced acute lung injury in unanesthetized sheep. Am Rev Respir Dis 137(2):420–428PubMedGoogle Scholar
  243. 243.
    Mirrakhimov AE, Ali AM, Barbaryan A, Prueksaritanond S (2013) Human immunodeficiency virus and pulmonary arterial hypertension. ISRN Cardiol 2013:903454PubMedCentralPubMedGoogle Scholar
  244. 244.
    Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD (2010) Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. Am J Physiol Lung Cell Mol Physiol 299(6):L891–L897PubMedGoogle Scholar
  245. 245.
    Mittal M, Gu XQ, Pak O, Pamenter ME, Haag D, Fuchs DB, Schermuly RT, Ghofrani HA, Brandes RP, Seeger W, Grimminger F, Haddad GG, Weissmann N (2012) Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 52(6):1033–1042PubMedGoogle Scholar
  246. 246.
    Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101(3):258–267PubMedGoogle Scholar
  247. 247.
    Montani D, Chaumais MC, Guignabert C, Gunther S, Girerd B, Jais X, Algalarrondo V, Price LC, Sitbon O, Simonneau G, Humbert M (2014) Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 141(2):172–191Google Scholar
  248. 248.
    Montani D, Gunther S, Dorfmuller P, Perros F, Girerd B, Garcia G, Jais X, Savale L, Artaud-Macari E, Price LC, Humbert M, Simonneau G, Sitbon O (2013) Pulmonary arterial hypertension. Orphanet J Rare Dis 8(1):97PubMedCentralPubMedGoogle Scholar
  249. 249.
    Montisano DF, Mann T, Spragg RG (1992) H2O2 increases expression of pulmonary artery endothelial cell platelet-derived growth factor mRNA. J Appl Physiol 73(6):2255–2262PubMedGoogle Scholar
  250. 250.
    Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, Hazen SL, Vichinsky EP, Morris SM Jr, Gladwin MT (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 294(1):81–90PubMedCentralPubMedGoogle Scholar
  251. 251.
    Morrow JD, Roberts LJ (2002) The isoprostanes: their role as an index of oxidant stress status in human pulmonary disease. Am J Respir Crit Care Med 166(12 pt 2):S25–S30PubMedGoogle Scholar
  252. 252.
    Mount PF, Kemp BE, Power DA (2007) Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol 42(2):271–279PubMedGoogle Scholar
  253. 253.
    Mukerjee D, St George D, Coleiro B, Knight C, Denton CP, Davar J, Black CM, Coghlan JG (2003) Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis 62(11):1088–1093PubMedCentralPubMedGoogle Scholar
  254. 254.
    Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC (2007) Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204(10):2373–2382PubMedCentralPubMedGoogle Scholar
  255. 255.
    Murata T, Sato K, Hori M, Ozaki H, Karaki H (2002) Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol Chem 277(46):44085–44092PubMedGoogle Scholar
  256. 256.
    Nachar RA, Pastene CM, Herrera EA, Riquelme RA, Sanhueza EM, Troncoso S, Llanos AJ (2001) Low-dose inhaled carbon monoxide reduces pulmonary vascular resistance during acute hypoxemia in adult sheep. High Alt Med Biol 2(3):377–385PubMedGoogle Scholar
  257. 257.
    Nagasaka H, Okano Y, Aizawa M, Miida T, Yorifuji T, Tajima G, Sakura N, Takatani T, Sanayama Y, Sugamoto K, Mayumi M, Kobayashi K, Hirano K, Takayanagi M, Tsukahara H (2010) Altered metabolisms of mediators controlling vascular function and enhanced oxidative stress in asymptomatic children with congenital portosystemic venous shunt. Metabolism 59(1):107–113PubMedGoogle Scholar
  258. 258.
    Nandi M, Leiper J, Arrigoni F, Hislop A, Vallance P, Haworth S (2006) Developmental regulation of GTP-CH1 in the porcine lung and its relationship to pulmonary vascular relaxation. Pediatr Res 59(6):767–772PubMedGoogle Scholar
  259. 259.
    Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JS, Wilkins MR, Ohta-Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD (2011) Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat 32(12):1385–1389PubMedGoogle Scholar
  260. 260.
    Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM (2010) Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 42(4):482–490PubMedCentralPubMedGoogle Scholar
  261. 261.
    Nozik-Grayck E, Suliman HB, Majka S, Albietz J, Van Rheen Z, Roush K, Stenmark KR (2008) Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295(3):L422–L430PubMedCentralPubMedGoogle Scholar
  262. 262.
    Odhiambo A, Perlman DH, Huang H, Costello CE, Farber HW, Steinberg MH, McComb ME, Klings ES (2007) Identification of oxidative post-translational modification of serum albumin in patients with idiopathic pulmonary arterial hypertension and pulmonary hypertension of sickle cell anemia. Rapid Commun Mass Spectrom 21(14):2195–2203PubMedGoogle Scholar
  263. 263.
    Oess S, Icking A, Fulton D, Govers R, Muller-Esterl W (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396(3):401–409PubMedCentralPubMedGoogle Scholar
  264. 264.
    Ogura S, Shimosawa T, Mu S, Sonobe T, Kawakami-Mori F, Wang H, Uetake Y, Yoshida K, Yatomi Y, Shirai M, Fujita T (2013) Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor. Am J Physiol Heart Circ Physiol 305(2):H155–H162PubMedGoogle Scholar
  265. 265.
    Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102(12):2061–2071PubMedCentralPubMedGoogle Scholar
  266. 266.
    Olson JW, Altiere RJ, Gillespie MN (1984) Prolonged activation of rat lung ornithine decarboxylase in monocrotaline-induced pulmonary hypertension. Biochem Pharmacol 33(22):3633–3637PubMedGoogle Scholar
  267. 267.
    Paddenberg R, Goldenberg A, Faulhammer P, Braun-Dullaeus RC, Kummer W (2003) Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature. Adv Exp Med Biol 536:163–169PubMedGoogle Scholar
  268. 268.
    Paffett ML, Hesterman J, Candelaria G, Lucas S, Anderson T, Irwin D, Hoppin J, Norenberg J, Campen MJ (2012) Longitudinal in vivo SPECT/CT imaging reveals morphological changes and cardiopulmonary apoptosis in a rodent model of pulmonary arterial hypertension. PLoS One 7(7):e40910PubMedCentralPubMedGoogle Scholar
  269. 269.
    Paffett ML, Lucas SN, Campen MJ (2012) Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: a potential role for atrogin-1 in smooth muscle. Vascul Pharmacol 56(1–2):64–73PubMedCentralPubMedGoogle Scholar
  270. 270.
    Palmer RM, Rees DD, Ashton DS, Moncada S (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153(3):1251–1256PubMedGoogle Scholar
  271. 271.
    Patel HH, Zhang S, Murray F, Suda RY, Head BP, Yokoyama U, Swaney JS, Niesman IR, Schermuly RT, Pullamsetti SS, Thistlethwaite PA, Miyanohara A, Farquhar MG, Yuan JX, Insel PA (2007) Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 21(11):2970–2979PubMedGoogle Scholar
  272. 272.
    Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S (2011) Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 123(11):1205–1215PubMedCentralPubMedGoogle Scholar
  273. 273.
    Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30(1):104–109PubMedGoogle Scholar
  274. 274.
    Perez-Penate G, Julia-Serda G, Pulido-Duque JM, Gorriz-Gomez E, Cabrera-Navarro P (2001) One-year continuous inhaled nitric oxide for primary pulmonary hypertension. Chest 119(3):970–973PubMedGoogle Scholar
  275. 275.
    Perez-Penate GM, Julia-Serda G, Ojeda-Betancort N, Garcia-Quintana A, Pulido-Duque J, Rodriguez-Perez A, Cabrera-Navarro P, Gomez-Sanchez MA (2008) Long-term inhaled nitric oxide plus phosphodiesterase 5 inhibitors for severe pulmonary hypertension. J Heart Lung Transplant 27(12):1326–1332PubMedGoogle Scholar
  276. 276.
    Pourmahram GE, Snetkov VA, Shaifta Y, Drndarski S, Knock GA, Aaronson PI, Ward JP (2008) Constriction of pulmonary artery by peroxide: role of Ca2+ release and PKC. Free Radic Biol Med 45(10):1468–1476PubMedGoogle Scholar
  277. 277.
    Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL, Aragon JP, Grinsfelder DB, Condit ME, Lefer DJ (2012) The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol 302(11):H2410–H2418PubMedCentralPubMedGoogle Scholar
  278. 278.
    Preston IR, Tang G, Tilan JU, Hill NS, Suzuki YJ (2005) Retinoids and pulmonary hypertension. Circulation 111(6):782–790PubMedGoogle Scholar
  279. 279.
    Proweller A, Pear WS, Parmacek MS (2005) Notch signaling represses myocardin-induced smooth muscle cell differentiation. J Biol Chem 280(10):8994–9004PubMedGoogle Scholar
  280. 280.
    Pullamsetti S, Kiss L, Ghofrani HA, Voswinckel R, Haredza P, Klepetko W, Aigner C, Fink L, Muyal JP, Weissmann N, Grimminger F, Seeger W, Schermuly RT (2005) Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension. FASEB J 19(9):1175–1177PubMedGoogle Scholar
  281. 281.
    Qin Y, Zhou A, Ben X, Shen J, Liang Y, Li F (2001) All-trans retinoic acid in pulmonary vascular structural remodeling in rats with pulmonary hypertension induced by monocrotaline. Chin Med J (Engl) 114(5):462–465Google Scholar
  282. 282.
    Qingyou Z, Junbao D, Weijin Z, Hui Y, Chaoshu T, Chunyu Z (2004) Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317(1):30–37PubMedGoogle Scholar
  283. 283.
    Quintavalle M, Elia L, Condorelli G, Courtneidge SA (2010) MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 189(1):13–22PubMedCentralPubMedGoogle Scholar
  284. 284.
    Rabinovitch M (2012) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 122(12):4306–4313PubMedCentralPubMedGoogle Scholar
  285. 285.
    Raman KG, Barbato JE, Ifedigbo E, Ozanich BA, Zenati MS, Otterbein LE, Tzeng E (2006) Inhaled carbon monoxide inhibits intimal hyperplasia and provides added benefit with nitric oxide. J Vasc Surg 44(1):151–158PubMedGoogle Scholar
  286. 286.
    Ramiro-Diaz JM, Nitta CH, Maston LD, Codianni S, Giermakowska W, Resta TC, Gonzalez Bosc LV (2013) NFAT is required for spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice. Am J Physiol Lung Cell Mol Physiol 304(9):L613–L625PubMedPubMedCentralGoogle Scholar
  287. 287.
    Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747PubMedGoogle Scholar
  288. 288.
    Rao J, Li J, Liu Y, Lu P, Sun X, Sugumaran PK, Zhu D (2012) The key role of PGC-1α in mitochondrial biogenesis and the proliferation of pulmonary artery vascular smooth muscle cells at an early stage of hypoxic exposure. Mol Cell Biochem 367(1–2):9–18PubMedGoogle Scholar
  289. 289.
    Rashid M, Kotwani A, Fahim M (2012) Long-acting phosphodiesterase 5 inhibitor, tadalafil, and superoxide dismutase mimetic, tempol, protect against acute hypoxia-induced pulmonary hypertension in rats. Hum Exp Toxicol 31(6):626–636PubMedGoogle Scholar
  290. 290.
    Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX (2008) Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 45(9):1223–1231PubMedCentralPubMedGoogle Scholar
  291. 291.
    Redout EM, van der Toorn A, Zuidwijk MJ, van de Kolk CW, van Echteld CJ, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2010) Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298(3):H1038–H1047PubMedGoogle Scholar
  292. 292.
    Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75(4):770–781PubMedGoogle Scholar
  293. 293.
    Rehman J, Archer SL (2010) A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661:171–185PubMedGoogle Scholar
  294. 294.
    Rhodes CJ, Wharton J, Howard L, Gibbs JS, Vonk-Noordegraaf A, Wilkins MR (2011) Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target. Eur Respir J 38(6):1453–1460PubMedGoogle Scholar
  295. 295.
    Robbins IM, Hemnes AR, Gibbs JS, Christman BW, Howard L, Meehan S, Cabrita I, Gonzalez R, Oyler T, Zhao L, Du RH, Mendes LA, Wilkins MR (2011) Safety of sapropterin dihydrochloride (6r-bh4) in patients with pulmonary hypertension. Exp Lung Res 37(1):26–34PubMedGoogle Scholar
  296. 296.
    Robbins IM, Morrow JD, Christman BW (2005) Oxidant stress but not thromboxane decreases with epoprostenol therapy. Free Radic Biol Med 38(5):568–574PubMedGoogle Scholar
  297. 297.
    Roberts JD Jr, Roberts CT, Jones RC, Zapol WM, Bloch KD (1995) Continuous nitric oxide inhalation reduces pulmonary arterial structural changes, right ventricular hypertrophy, and growth retardation in the hypoxic newborn rat. Circ Res 76(2):215–222PubMedGoogle Scholar
  298. 298.
    Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28(4):505–513PubMedGoogle Scholar
  299. 299.
    Ronchi CF, Ferreira AL, Campos FJ, Kurokawa CS, Carpi MF, Moraes MA, Bonatto RC, Yeum KJ, Fioretto JR (2013) Interactive effects of mechanical ventilation, inhaled nitric oxide and oxidative stress in acute lung injury. Respir Physiol Neurobiol 190c:118–123Google Scholar
  300. 300.
    Roos CM, Frank DU, Xue C, Johns RA, Rich GF (1996) Chronic inhaled nitric oxide: effects on pulmonary vascular endothelial function and pathology in rats. J Appl Physiol 80(1):252–260PubMedGoogle Scholar
  301. 301.
    Rother RP, Bell L, Hillmen P, Gladwin MT (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293(13):1653–1662PubMedGoogle Scholar
  302. 302.
    Ryter SW, Choi AM (2008) Caveolin-1: a critical regulator of pulmonary vascular architecture and nitric oxide bioavailability in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 294(5):L862–L864PubMedGoogle Scholar
  303. 303.
    Safdar Z, Bartolome S, Sussman N (2012) Portopulmonary hypertension: an update. Liver Transpl 18(8):881–891PubMedGoogle Scholar
  304. 304.
    Saito A, Sugawara A, Uruno A, Kudo M, Kagechika H, Sato Y, Owada Y, Kondo H, Sato M, Kurabayashi M, Imaizumi M, Tsuchiya S, Ito S (2007) All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology 148(3):1412–1423PubMedGoogle Scholar
  305. 305.
    Sakao S, Tatsumi K (2011) The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 81(3):253–261PubMedGoogle Scholar
  306. 306.
    Sasaki A, Doi S, Mizutani S, Azuma H (2007) Roles of accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, and attenuated nitric oxide synthase activity in endothelial cells for pulmonary hypertension in rats. Am J Physiol Lung Cell Mol Physiol 292(6):L1480–L1487PubMedGoogle Scholar
  307. 307.
    Schmidt AF, Goncalves FL, Regis AC, Gallindo RM, Sbragia L (2012) Prenatal retinoic acid improves lung vascularization and VEGF expression in CDH rat. Am J Obstet Gynecol 207(1):76.e25–76.e32Google Scholar
  308. 308.
    Schunemann HJ, Grant BJ, Freudenheim JL, Muti P, Browne RW, Drake JA, Klocke RA, Trevisan M (2001) The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Am J Respir Crit Care Med 163(5):1246–1255PubMedGoogle Scholar
  309. 309.
    Searles CD (2006) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 291(5):C803–C816PubMedGoogle Scholar
  310. 310.
    Sentman ML, Granstrom M, Jakobson H, Reaume A, Basu S, Marklund SL (2006) Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J Biol Chem 281(11):6904–6909PubMedGoogle Scholar
  311. 311.
    Seta F, Rahmani M, Turner PV, Funk CD (2011) Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One 6(8):e23439PubMedCentralPubMedGoogle Scholar
  312. 312.
    Shao Z, Wang Z, Shrestha K, Thakur A, Borowski AG, Sweet W, Thomas JD, Moravec CS, Hazen SL, Tang WH (2012) Pulmonary hypertension associated with advanced systolic heart failure: dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1. J Am Coll Cardiol 59(13):1150–1158PubMedCentralPubMedGoogle Scholar
  313. 313.
    Sharma S, Grobe AC, Wiseman DA, Kumar S, Englaish M, Najwer I, Benavidez E, Oishi P, Azakie A, Fineman JR, Black SM (2007) Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. Am J Physiol Lung Cell Mol Physiol 293(4):L960–L971PubMedGoogle Scholar
  314. 314.
    Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res 56(2):259–269PubMedGoogle Scholar
  315. 315.
    Shen CY, Lee JF, Su CL, Wang D, Chen CF (2008) Hypoxia and reoxygenation of the lung tissues induced mRNA expressions of superoxide dismutase and catalase and interventions from different antioxidants. Transplant Proc 40(7):2182–2184PubMedGoogle Scholar
  316. 316.
    Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R (2009) A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46(5):331–337PubMedGoogle Scholar
  317. 317.
    Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1 suppl):S43–S54PubMedGoogle Scholar
  318. 318.
    Smith TG, Balanos GM, Croft QP, Talbot NP, Dorrington KL, Ratcliffe PJ, Robbins PA (2008) The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J Physiol 586(pt 24):5999–6005PubMedCentralPubMedGoogle Scholar
  319. 319.
    Snell GI, Salamonsen RF, Bergin P, Esmore DS, Khan S, Williams TJ (1995) Inhaled nitric oxide used as a bridge to heart-lung transplantation in a patient with end-stage pulmonary hypertension. Am J Respir Crit Care Med 151(4):1263–1266PubMedGoogle Scholar
  320. 320.
    Sousa-Santos O, Neto-Neves EM, Ferraz KC, Sertorio JT, Portella RL, Tanus-Santos JE (2013) The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption. Thromb Res 132(5):578–583PubMedGoogle Scholar
  321. 321.
    Spiekermann S, Schenk K, Hoeper MM (2009) Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension. Eur Respir J 34(1):276PubMedGoogle Scholar
  322. 322.
    Sproule DM, Dyme J, Coku J, de Vinck D, Rosenzweig E, Chung WK, De Vivo DC (2008) Pulmonary artery hypertension in a child with MELAS due to a point mutation of the mitochondrial tRNA((Leu)) gene (m.3243A > G). J Inherit Metab Dis. doi: 10.1007/s10545-007-0735-3
  323. 323.
    Srisook K, Han SS, Choi HS, Li MH, Ueda H, Kim C, Cha YN (2006) CO from enhanced HO activity or from CORM-2 inhibits both O2– and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem Pharmacol 71(3):307–318PubMedGoogle Scholar
  324. 324.
    Star GP, Giovinazzo M, Langleben D (2013) ALK2 and BMPR2 knockdown and endothelin-1 production by pulmonary microvascular endothelial cells. Microvasc Res 85:46–53PubMedGoogle Scholar
  325. 325.
    Steinhorn RH, Albert G, Swartz DD, Russell JA, Levine CR, Davis JM (2001) Recombinant human superoxide dismutase enhances the effect of inhaled nitric oxide in persistent pulmonary hypertension. Am J Respir Crit Care Med 164(5):834–839PubMedGoogle Scholar
  326. 326.
    Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, Zapol WM (1997) Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81(1):34–41PubMedGoogle Scholar
  327. 327.
    Steudel W, Scherrer-Crosbie M, Bloch KD, Weimann J, Huang PL, Jones RC, Picard MH, Zapol WM (1998) Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest 101(11):2468–2477PubMedCentralPubMedGoogle Scholar
  328. 328.
    Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-β1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290(4):L661–L673PubMedGoogle Scholar
  329. 329.
    Sud N, Wells SM, Sharma S, Wiseman DA, Wilham J, Black SM (2008) Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction. Am J Physiol Cell Physiol 294(6):C1407–C1418PubMedGoogle Scholar
  330. 330.
    Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22(1):209–217PubMedGoogle Scholar
  331. 331.
    Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2(44):44ra58PubMedGoogle Scholar
  332. 332.
    Suzuki YJ, Steinhorn RH, Gladwin MT (2013) Antioxidant therapy for the treatment of pulmonary hypertension. Antioxid Redox Signal 18(14):1723–1726PubMedGoogle Scholar
  333. 333.
    Swamidas GP, Basaraba RJ, Baybutt RC (1999) Dietary retinol inhibits inflammatory responses of rats treated with monocrotaline. J Nutr 129(7):1285–1290PubMedGoogle Scholar
  334. 334.
    Sydow K, Münzel T (2003) ADMA and oxidative stress. Atheroscler Suppl 4(4):41–51PubMedGoogle Scholar
  335. 335.
    Tabima DM, Frizzell S, Gladwin MT (2012) Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 52(9):1970–1986PubMedGoogle Scholar
  336. 336.
    Takahashi S, Mendelsohn ME (2003) Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J Biol Chem 278(33):30821–30827PubMedGoogle Scholar
  337. 337.
    Tate RM, Morris HG, Schroeder WR, Repine JE (1984) Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest 74(2):608–613PubMedCentralPubMedGoogle Scholar
  338. 338.
    Teng RJ, Du J, Xu H, Bakhutashvili I, Eis A, Shi Y, Pritchard KA Jr, Konduri GG (2011) Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol 301(3):L334–L345PubMedCentralPubMedGoogle Scholar
  339. 339.
    Teng RJ, Eis A, Bakhutashvili I, Arul N, Konduri GG (2009) Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 297(1):L184–L195PubMedCentralPubMedGoogle Scholar
  340. 340.
    Thibeault DW, Rezaiekhaligh M, Mabry S, Beringer T (1991) Prevention of chronic pulmonary oxygen toxicity in young rats with liposome-encapsulated catalase administered intratracheally. Pediatr Pulmonol 11(4):318–327PubMedGoogle Scholar
  341. 341.
    Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51(5):1000–1013PubMedCentralPubMedGoogle Scholar
  342. 342.
    Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195(3):367–374PubMedGoogle Scholar
  343. 343.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273(24):15022–15029PubMedGoogle Scholar
  344. 344.
    Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274(32):22699–22704PubMedGoogle Scholar
  345. 345.
    van Albada ME, Bartelds B, Wijnberg H, Mohaupt S, Dickinson MG, Schoemaker RG, Kooi K, Gerbens F, Berger RM (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol 298(4):L483–L491PubMedGoogle Scholar
  346. 346.
    Van Rheen Z, Fattman C, Domarski S, Majka S, Klemm D, Stenmark KR, Nozik-Grayck E (2011) Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J Respir Cell Mol Biol 44(4):500–508PubMedCentralPubMedGoogle Scholar
  347. 347.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCentralPubMedGoogle Scholar
  348. 348.
    Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N (2013) Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 19(18):2213–2231Google Scholar
  349. 349.
    Venditti CP, Harris MC, Huff D, Peterside I, Munson D, Weber HS, Rome J, Kaye EM, Shanske S, Sacconi S, Tay S, DiMauro S, Berry GT (2004) Congenital cardiomyopathy and pulmonary hypertension: another fatal variant of cytochrome-c oxidase deficiency. J Inherit Metab Dis 27(6):735–739PubMedGoogle Scholar
  350. 350.
    Venema RC, Sayegh HS, Arnal JF, Harrison DG (1995) Role of the enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Biol Chem 270(24):14705–14711PubMedGoogle Scholar
  351. 351.
    Villegas LR, Kluck D, Field C, Oberley-Deegan RE, Woods C, Yeager ME, El Kasmi KC, Savani RC, Bowler RP, Nozik-Grayck E (2013) Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxid Redox Signal 18(14):1753–1764PubMedGoogle Scholar
  352. 352.
    Voelkel NF, Bogaard HJ, Al Husseini A, Farkas L, Gomez-Arroyo J, Natarajan R (2013) Antioxidants for the treatment of patients with severe angioproliferative pulmonary hypertension? Antioxid Redox Signal 18(14):1810–1817PubMedGoogle Scholar
  353. 353.
    Voelkel NF, Vandivier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290(2):L209–L221PubMedGoogle Scholar
  354. 354.
    Walton JP, Julian RJ, Squires EJ (2001) The effects of dietary flax oil and antioxidants on ascites and pulmonary hypertension in broilers using a low temperature model. Br Poultry Sci 42(1):123–129Google Scholar
  355. 355.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271PubMedCentralPubMedGoogle Scholar
  356. 356.
    Wang XT, McCullough KD, Wang XJ, Carpenter G, Holbrook NJ (2001) Oxidative stress-induced phospholipase C-γ 1 activation enhances cell survival. J Biol Chem 276(30):28364–28371PubMedGoogle Scholar
  357. 357.
    Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88(12):1259–1266PubMedGoogle Scholar
  358. 358.
    Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106(3):526–535PubMedCentralPubMedGoogle Scholar
  359. 359.
    Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91(8):719–726PubMedGoogle Scholar
  360. 360.
    Wedgwood S, Dettman RW, Black SM (2001) ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 281(5):L1058–L1067PubMedGoogle Scholar
  361. 361.
    Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM (2007) Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61(1):32–36PubMedGoogle Scholar
  362. 362.
    Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH (2013) Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 18(14):1765–1776PubMedGoogle Scholar
  363. 363.
    Wedgwood S, Lakshminrusimha S, Fukai T, Russell JA, Schumacker PT, Steinhorn RH (2011) Hydrogen peroxide regulates extracellular superoxide dismutase activity and expression in neonatal pulmonary hypertension. Antioxid Redox Signal 15(6):1497–1506PubMedCentralPubMedGoogle Scholar
  364. 364.
    Wedgwood S, Steinhorn RH, Bunderson M, Wilham J, Lakshminrusimha S, Brennan LA, Black SM (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 289(4):L660–L666PubMedCentralPubMedGoogle Scholar
  365. 365.
    Wei HL, Zhang CY, Jin HF, Tang CS, Du JB (2008) Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol Sin 29(6):670–679PubMedGoogle Scholar
  366. 366.
    Wei L, Zhu W, Xia L, Yang Y, Liu H, Shen J, Zhu J, Xu Y, Yang Z, Wang C (2013) Therapeutic effect of eNOS-transfected endothelial progenitor cells on hemodynamic pulmonary arterial hypertension. Hypertens Res 36(5):414–421PubMedGoogle Scholar
  367. 367.
    Weigand L, Sylvester JT, Shimoda LA (2006) Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 290(2):L284–L290PubMedGoogle Scholar
  368. 368.
    Weir EK, Archer SL (2006) Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol 101(3):995–998; discussion 998PubMedGoogle Scholar
  369. 369.
    Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353(19):2042–2055PubMedCentralPubMedGoogle Scholar
  370. 370.
    Weissmann N, Ebert N, Ahrens M, Ghofrani HA, Schermuly RT, Hanze J, Fink L, Rose F, Conzen J, Seeger W, Grimminger F (2003) Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. Am J Respir Cell Mol Biol 29(6):721–732PubMedGoogle Scholar
  371. 371.
    Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, Quanz K, Ghofrani HA, Schermuly RT, Fink L, Seeger W, Grimminger F (2006) Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 34(4):505–513PubMedGoogle Scholar
  372. 372.
    Wojciak-Stothard B, Torondel B, Tsang LY, Fleming I, Fisslthaler B, Leiper JM, Vallance P (2007) The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 120(pt 6):929–942PubMedGoogle Scholar
  373. 373.
    Wong CM, Bansal G, Pavlickova L, Marcocci L, Suzuki YJ (2013) Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxid Redox Signal 18(14):1789–1796PubMedGoogle Scholar
  374. 374.
    Wong CM, Preston IR, Hill NS, Suzuki YJ (2012) Iron chelation inhibits the development of pulmonary vascular remodeling. Free Radic Biol Med 53(9):1738–1747PubMedCentralPubMedGoogle Scholar
  375. 375.
    Wright L, Tuder RM, Wang J, Cool CD, Lepley RA, Voelkel NF (1998) 5-Lipoxygenase and 5-lipoxygenase activating protein (FLAP) immunoreactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med 157(1):219–229PubMedGoogle Scholar
  376. 376.
    Wunderlich C, Schmeisser A, Heerwagen C, Ebner B, Schober K, Braun-Dullaeus RC, Schwencke C, Kasper M, Morawietz H, Strasser RH (2008) Chronic NOS inhibition prevents adverse lung remodeling and pulmonary arterial hypertension in caveolin-1 knockout mice. Pulm Pharmacol Ther 21(3):507–515PubMedGoogle Scholar
  377. 377.
    Wunderlich C, Schober K, Schmeisser A, Heerwagen C, Tausche AK, Steinbronn N, Brandt A, Kasper M, Schwencke C, Braun-Dullaeus RC, Strasser RH (2008) The adverse cardiopulmonary phenotype of caveolin-1 deficient mice is mediated by a dysfunctional endothelium. J Mol Cell Cardiol 44(5):938–947PubMedGoogle Scholar
  378. 378.
    Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, Lu Q, Oelze M, Torzewski M, Lackner KJ, Munzel T, Forstermann U, Li H (2010) Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 335(1):149–154PubMedGoogle Scholar
  379. 379.
    Xiang RP, Sun WD, Wang JY, Wang XL (2002) Effect of vitamin C on pulmonary hypertension and muscularisation of pulmonary arterioles in broilers. Br Poultry Sci 43(5 suppl):705–712Google Scholar
  380. 380.
    Xu D, Guo H, Xu X, Lu Z, Fassett J, Hu X, Xu Y, Tang Q, Hu D, Somani A, Geurts AM, Ostertag E, Bache RJ, Weir EK, Chen Y (2011) Exacerbated pulmonary arterial hypertension and right ventricular hypertrophy in animals with loss of function of extracellular superoxide dismutase. Hypertension 58(2):303–309PubMedCentralPubMedGoogle Scholar
  381. 381.
    Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC (2004) Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 18(14):1746–1748PubMedGoogle Scholar
  382. 382.
    Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 104(4):1342–1347PubMedCentralPubMedGoogle Scholar
  383. 383.
    Yang L, Zheng BX, Cheng DY, Su QL, Fan LL, Yang YJ, Mu M, Chen WB (2008) The effect of breviscapine on the pulmonary arterial pressure and the expression of Rho-kinase in pulmonary arterioles of hypoxic rats. Chin J Tuberc Respir Dis 31(11):826–830Google Scholar
  384. 384.
    Yang Y, Nie W, Yuan J, Zhang B, Wang Z, Wu Z, Guo Y (2010) Genistein activates endothelial nitric oxide synthase in broiler pulmonary arterial endothelial cells by an Akt-dependent mechanism. Exp Mol Med 42(11):768–776PubMedCentralPubMedGoogle Scholar
  385. 385.
    Yang Y, Zhang BK, Liu D, Nie W, Yuan JM, Wang Z, Guo YM (2012) Sodium hydrosulfide prevents hypoxia-induced pulmonary arterial hypertension in broilers. Br Poultry Sci 53(5):608–615Google Scholar
  386. 386.
    Yetik-Anacak G, Catravas JD (2006) Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vascul Pharmacol 45(5):268–276PubMedGoogle Scholar
  387. 387.
    Yi ES, Kim H, Ahn H, Strother J, Morris T, Masliah E, Hansen LA, Park K, Friedman PJ (2000) Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Respir Crit Care Med 162(4 pt 1):1577–1586PubMedGoogle Scholar
  388. 388.
    Yi SL, Kantores C, Belcastro R, Cabacungan J, Tanswell AK, Jankov RP (2006) 8-Isoprostane-induced endothelin-1 production by infant rat pulmonary artery smooth muscle cells is mediated by Rho-kinase. Free Radic Biol Med 41(6):942–949PubMedGoogle Scholar
  389. 389.
    Yoshizumi M, Abe J, Haendeler J, Huang Q, Berk BC (2000) Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem 275(16):11706–11712PubMedGoogle Scholar
  390. 390.
    Zemskova M, Sahakian E, Bashkirova S, Lilly M (2008) The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J Biol Chem 283(30):20635–20644PubMedCentralPubMedGoogle Scholar
  391. 391.
    Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81PubMedGoogle Scholar
  392. 392.
    Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K (2010) Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J 74(8):1696–1703PubMedGoogle Scholar
  393. 393.
    Zhang TT, Cui B, Dai DZ, Su W (2005) CPU 86017, p-chlorobenzyltetrahydroberberine chloride, attenuates monocrotaline-induced pulmonary hypertension by suppressing endothelin pathway. Acta Pharmacol Sin 26(11):1309–1316PubMedGoogle Scholar
  394. 394.
    Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016PubMedCentralPubMedGoogle Scholar
  395. 395.
    Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96(4):442–450PubMedGoogle Scholar
  396. 396.
    Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A 99(17):11375–11380PubMedCentralPubMedGoogle Scholar
  397. 397.
    Zhao YY, Malik AB (2009) A novel insight into the mechanism of pulmonary hypertension involving caveolin-1 deficiency and endothelial nitric oxide synthase activation. Trends Cardiovasc Med 19(7):238–242PubMedCentralPubMedGoogle Scholar
  398. 398.
    Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM, Brovkovych V, Yuan JX, Wharton J, Malik AB (2009) Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 119(7):2009–2018PubMedCentralPubMedGoogle Scholar
  399. 399.
    Zhou Z, Song R, Fattman CL, Greenhill S, Alber S, Oury TD, Choi AM, Morse D (2005) Carbon monoxide suppresses bleomycin-induced lung fibrosis. Am J Pathol 166(1):27–37PubMedCentralPubMedGoogle Scholar
  400. 400.
    Zinkevich NS, Gutterman DD (2011) ROS-induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol 301(3):H647–H653PubMedCentralPubMedGoogle Scholar
  401. 401.
    Zou MH, Cohen R, Ullrich V (2004) Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium 11(2):89–97PubMedGoogle Scholar
  402. 402.
    Zuckerbraun BS, Chin BY, Bilban M, d’Avila JC, Rao J, Billiar TR, Otterbein LE (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21(4):1099–1106PubMedGoogle Scholar
  403. 403.
    Zuckerbraun BS, Chin BY, Wegiel B, Billiar TR, Czsimadia E, Rao J, Shimoda L, Ifedigbo E, Kanno S, Otterbein LE (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203(9):2109–2119PubMedCentralPubMedGoogle Scholar
  404. 404.
    Zuckerbraun BS, Stoyanovsky DA, Sengupta R, Shapiro RA, Ozanich BA, Rao J, Barbato JE, Tzeng E (2007) Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA. Am J Physiol Cell Physiol 292(2):C824–C831PubMedGoogle Scholar
  405. 405.
    Zulueta JJ, Yu FS, Hertig IA, Thannickal VJ, Hassoun PM (1995) Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am J Respir Cell Mol Biol 12(1):41–49PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Izabela Chrobak
    • 1
    • 2
  • Christina Mallarino Haeger
    • 1
  • Marcy E. Maracle
    • 3
  • Laura E. Fredenburgh
    • 1
    • 2
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
  3. 3.McGill UniversityMontrealCanada

Personalised recommendations