Skip to main content

Pulmonary Fibrosis and Oxidative Stress

  • Chapter
  • First Online:
  • 1344 Accesses

Abstract

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive fibrosis of the alveolar interstitium. The pathogenesis is thought to involve abnormal re-epithelialization and dysregulated remodeling of the extracellular matrix (ECM) after alveolar injury. There is growing evidence through human and animal studies that oxidative stress plays a role in this dysregulation. Markers of oxidative stress have been identified in the lungs of IPF patients and aberrant antioxidant activity exacerbates pulmonary fibrosis in animal models. In addition, the ECM is a critical component in regulating cellular homeostasis and appropriate wound healing. Recent investigations support that the matrix is a target of oxidative stress in the lung and IPF. ECM degradation products, produced by reactive oxygen species, may promote fibrogenesis by influencing epithelial, mesenchymal, and inflammatory cell activity. The impact of the interactions of oxidative stress and the matrix of the lung remains unclear and may prove to be an important target for new therapies in IPF. Utilizing oxidative species, antioxidants, enzymes, or the tissue matrix as therapeutic targets to control oxidative stress in IPF will continue to be an area of active research and innovative discoveries in the coming years.

Kliment et al. “Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis.” FRBM, Sept. 2010.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BALF:

Bronchoalveolar lavage fluid

ECSOD:

Extracellular superoxide dismutase

IPF:

Idiopathic pulmonary fibrosis

MBD:

Matrix binding domain

MPO:

Myeloperoxidase

NAC:

N-acetylcysteine

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

References

  1. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias (2002) This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 165(2):277–304

    Google Scholar 

  2. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345(7): 517–525

    PubMed  CAS  Google Scholar 

  3. Rahman I et al (1999) Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic Biol Med 27(1–2):60–68

    PubMed  CAS  Google Scholar 

  4. Teramoto S et al (1995) Superoxide anion formation and glutathione metabolism of blood in patients with idiopathic pulmonary fibrosis. Biochem Mol Med 55(1):66–70

    PubMed  CAS  Google Scholar 

  5. Daniil ZD et al (2008) Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 21(1):26–31

    PubMed  CAS  Google Scholar 

  6. Raghu G et al (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816

    PubMed  Google Scholar 

  7. American Thoracic Society (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 161(2 pt 1):646–664

    Google Scholar 

  8. Katzenstein AA, Askin FB (1982) Surgical pathology of non-neoplastic lung disease. Major Probl Pathol 13:1–430

    PubMed  CAS  Google Scholar 

  9. Korfei M et al (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178(8):838–846

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Selman M, Pardo A (2002) Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 3:3

    PubMed  PubMed Central  Google Scholar 

  11. Gauldie J et al (1999) Transforming growth factor-beta gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol 93:35–45

    PubMed  CAS  Google Scholar 

  12. Kasai H et al (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    PubMed  PubMed Central  Google Scholar 

  13. Khalil N et al (1996) TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 14(2):131–138

    PubMed  CAS  Google Scholar 

  14. Sheppard D (2001) Integrin-mediated activation of transforming growth factor-beta(1) in pulmonary fibrosis. Chest 120(1 suppl):49S–53S

    PubMed  CAS  Google Scholar 

  15. Beeh KM et al (2002) Glutathione deficiency of the lower respiratory tract in patients with idiopathic pulmonary fibrosis. Eur Respir J 19(6):1119–1123

    PubMed  CAS  Google Scholar 

  16. Cantin AM, Hubbard RC, Crystal RG (1989) Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 139(2):370–372

    PubMed  CAS  Google Scholar 

  17. Strausz J et al (1990) Oxygen radical production by alveolar inflammatory cells in idiopathic pulmonary fibrosis. Am Rev Respir Dis 141(1):124–128

    PubMed  CAS  Google Scholar 

  18. Kinder BW et al (2008) Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 133(1):226–232

    PubMed  CAS  Google Scholar 

  19. Lenz AG et al (2004) Influence of inflammatory mechanisms on the redox balance in interstitial lung diseases. Respir Med 98(8):737–745

    PubMed  CAS  Google Scholar 

  20. Obayashi Y et al (1997) The role of neutrophils in the pathogenesis of idiopathic pulmonary fibrosis. Chest 112(5):1338–1343

    PubMed  CAS  Google Scholar 

  21. Governa M et al (1999) Role of iron in asbestos-body-induced oxidant radical generation. J Toxicol Environ Health A 58(5):279–287

    PubMed  CAS  Google Scholar 

  22. Schapira RM et al (1994) Hydroxyl radicals are formed in the rat lung after asbestos instillation in vivo. Am J Respir Cell Mol Biol 10(5):573–579

    PubMed  CAS  Google Scholar 

  23. Haegens A et al (2007) Airway epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin production in vivo. J Immunol 178(3):1800–1808

    PubMed  CAS  Google Scholar 

  24. Rola-Pleszczynski M, Gouin S, Begin R (1984) Asbestos-induced lung inflammation. Role of local macrophage-derived chemotactic factors in accumulation of neutrophils in the lungs. Inflammation 8(1):53–62

    PubMed  CAS  Google Scholar 

  25. Dostert C et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320(5876):674–677

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 84(8):1013–1023

    PubMed  CAS  Google Scholar 

  27. Card JW et al (2003) Attenuation of amiodarone-induced pulmonary fibrosis by vitamin E is associated with suppression of transforming growth factor-beta1 gene expression but not prevention of mitochondrial dysfunction. J Pharmacol Exp Ther 304(1):277–283

    PubMed  CAS  Google Scholar 

  28. Caporossi D et al (2003) Cellular responses to H(2)O(2) and bleomycin-induced oxidative stress in L6C5 rat myoblasts. Free Radic Biol Med 35(11):1355–1364

    PubMed  CAS  Google Scholar 

  29. Teixeira KC et al (2008) Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine. Pulm Pharmacol Ther 21(2):309–316

    PubMed  CAS  Google Scholar 

  30. Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66(5):1281–1293

    PubMed  Google Scholar 

  31. Ao X et al (2008) Comparative proteomic analysis of radiation-induced changes in mouse lung: fibrosis-sensitive and -resistant strains. Radiat Res 169(4):417–425

    PubMed  CAS  Google Scholar 

  32. Puthawala K et al (2008) Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 177(1):82–90

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Rube CE et al (2000) Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 47(4):1033–1042

    PubMed  CAS  Google Scholar 

  34. Johnston CJ et al (2004) Inflammatory cell recruitment following thoracic irradiation. Exp Lung Res 30(5):369–382

    PubMed  CAS  Google Scholar 

  35. Nogee LM et al (2001) A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 344(8):573–579

    PubMed  CAS  Google Scholar 

  36. Bitterman PB et al (1986) Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members. N Engl J Med 314(21):1343–1347

    PubMed  CAS  Google Scholar 

  37. Lynch DA (2009) Lung disease related to collagen vascular disease. J Thorac Imaging 24(4):299–309

    PubMed  Google Scholar 

  38. Shi-wen X et al (2000) Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res 259(1):213–224

    PubMed  CAS  Google Scholar 

  39. Baptista AL et al (2006) Structural features of epithelial remodeling in usual interstitial pneumonia histologic pattern. Lung 184(4):239–244

    PubMed  Google Scholar 

  40. Hagimoto N, Kuwano K, Miyazaki H et al (1997) Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 17:272–278

    PubMed  CAS  Google Scholar 

  41. Kuwano K, Hagimoto N, Kawasaki M et al (1999) Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 104:13–19

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Sisson TH, Mendez M, Choi K et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181:254–263

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Li H et al (1996) Expression of TGF-beta 1, PDGF and IGF-1 mRNA in lung of bleomycin-A5-induced pulmonary fibrosis in rats. Chin Med J (Engl) 109(7):533–536

    CAS  Google Scholar 

  44. Xu YD et al (2003) Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 285(3):L527–L539

    PubMed  CAS  Google Scholar 

  45. MacNee W, Rahman I (1995) Oxidants/antioxidants in idiopathic pulmonary fibrosis. Thorax 50(suppl 1):S53–S58

    PubMed  PubMed Central  Google Scholar 

  46. Collard HR et al (2004) Combined corticosteroid and cyclophosphamide therapy does not alter survival in idiopathic pulmonary fibrosis. Chest 125(6):2169–2174

    PubMed  CAS  Google Scholar 

  47. Douglas WW et al (1998) Colchicine versus prednisone in the treatment of idiopathic pulmonary fibrosis. A randomized prospective study. Members of the Lung Study Group. Am J Respir Crit Care Med 158(1):220–225

    PubMed  CAS  Google Scholar 

  48. Flaherty KR et al (2001) Steroids in idiopathic pulmonary fibrosis: a prospective assessment of adverse reactions, response to therapy, and survival. Am J Med 110(4):278–282

    PubMed  CAS  Google Scholar 

  49. Rudd RM, Haslam PL, Turner-Warwick M (1981) Cryptogenic fibrosing alveolitis. Relationships of pulmonary physiology and bronchoalveolar lavage to response to treatment and prognosis. Am Rev Respir Dis 124(1):1–8

    PubMed  CAS  Google Scholar 

  50. Boomars KA et al (1995) Relationship between cells obtained by bronchoalveolar lavage and survival in idiopathic pulmonary fibrosis. Thorax 50(10):1087–1092

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Cassel SL et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105(26):9035–9040

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Bergeron A et al (2003) Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF-beta and IL-10. Eur Respir J 22(1):69–76

    PubMed  CAS  Google Scholar 

  53. Waghray M et al (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19(7):854–856

    PubMed  CAS  Google Scholar 

  54. Ozaki T et al (1992) Neutrophil chemotactic factors in the respiratory tract of patients with chronic airway diseases or idiopathic pulmonary fibrosis. Am Rev Respir Dis 145(1):85–91

    PubMed  CAS  Google Scholar 

  55. Ryu YJ et al (2007) Bronchoalveolar lavage in fibrotic idiopathic interstitial pneumonias. Respir Med 101(3):655–660

    PubMed  Google Scholar 

  56. Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167(12):1600–1619

    PubMed  Google Scholar 

  57. Kukin ML, Fuster V (2003) Oxidative stress and cardiac failure, vol xx. Futura Publishing, Armonk, NY, p 291

    Google Scholar 

  58. Winyard PG, Blake DR, Evans CH (2000) Free radicals and inflammation, vol ix. Basel, Birkhäuser, p 259

    Google Scholar 

  59. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91(3C):14S–22S

    PubMed  CAS  Google Scholar 

  60. Baskin SI, Salem H (eds) (1997) Oxidants, antioxidants, and free radicals. Taylor & Francis, Washington, DC, p 325

    Google Scholar 

  61. Ghio AJ et al (2002) Iron regulates xanthine oxidase activity in the lung. Am J Physiol Lung Cell Mol Physiol 283(3):L563–L572

    PubMed  CAS  Google Scholar 

  62. Lynch MJ et al (1988) Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury. J Surg Res 44(5):538–544

    PubMed  CAS  Google Scholar 

  63. Terada LS et al (1992) Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia-reperfusion. Am J Physiol 263(3 pt 1):L394–L401

    PubMed  CAS  Google Scholar 

  64. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232(1–2):3–14

    PubMed  CAS  Google Scholar 

  65. Derevianko A et al (1997) Endogenous PMN-derived reactive oxygen intermediates provide feedback regulation on respiratory burst signal transduction. J Leukoc Biol 62(2):268–276

    PubMed  CAS  Google Scholar 

  66. Hecker L et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Manoury B et al (2005) The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res 6:11

    PubMed  PubMed Central  Google Scholar 

  68. Shvedova AA et al (2008) Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 231(2):235–240

    PubMed  CAS  Google Scholar 

  69. Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O, Guichard C, Arbiser JL, Banfi B, Pache JC, Barazzone-Argiroffo C, Krause KH (2011) A key role for nox4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15:607–619

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Hawkins CL, Davies MJ (1998) Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite: evidence for radical intermediates and fragmentation. Free Radic Biol Med 24(9):1396–1410

    PubMed  CAS  Google Scholar 

  71. Rees MD, Hawkins CL, Davies MJ (2004) Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem J 381(pt 1):175–184

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Rees MD, Pattison DI, Davies MJ (2005) Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem J 391(pt 1): 125–134

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Eiserich JP et al (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296(5577):2391–2394

    PubMed  CAS  Google Scholar 

  74. Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26(1–2):3–31

    PubMed  CAS  Google Scholar 

  75. Hsu YC, Wang LF, Chien YW (2007) Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radic Biol Med 42(5):599–607

    PubMed  CAS  Google Scholar 

  76. Zeidler P et al (2004) Role of inducible nitric oxide synthase-derived nitric oxide in silica-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health A 67(13): 1001–1026

    PubMed  CAS  Google Scholar 

  77. Ricciardolo FL et al (2006) Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 533(1–3):240–252

    PubMed  CAS  Google Scholar 

  78. Pfeilschifter J, Eberhardt W, Beck KF (2001) Regulation of gene expression by nitric oxide. Pflugers Arch 442(4):479–486

    PubMed  CAS  Google Scholar 

  79. Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18(4):195–199

    PubMed  CAS  Google Scholar 

  80. Oury TD et al (1995) Nitration of tyrosine by hydrogen peroxide and nitrite. Free Radic Res 23(6):537–547

    PubMed  CAS  Google Scholar 

  81. Oury TD, Day BJ, Crapo JD (1996) Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 75(5):617–636

    PubMed  CAS  Google Scholar 

  82. Eiserich JP et al (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391(6665):393–397

    PubMed  CAS  Google Scholar 

  83. Saleh D, Barnes PJ, Giaid A (1997) Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155(5):1763–1769

    PubMed  CAS  Google Scholar 

  84. Montuschi P et al (1998) 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med 158(5 pt 1):1524–1527

    PubMed  CAS  Google Scholar 

  85. Psathakis K et al (2006) Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur J Clin Invest 36(5):362–367

    PubMed  CAS  Google Scholar 

  86. Kanoh S, Kobayashi H, Motoyoshi K (2005) Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128(4):2387–2392

    PubMed  CAS  Google Scholar 

  87. Lenz AG, Costabel U, Maier KL (1996) Oxidized BAL fluid proteins in patients with interstitial lung diseases. Eur Respir J 9(2):307–312

    PubMed  CAS  Google Scholar 

  88. Bargagli E et al (2007) Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung 185(3):139–144

    PubMed  CAS  Google Scholar 

  89. Rottoli P et al (2005) Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5(10):2612–2618

    PubMed  CAS  Google Scholar 

  90. Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvedimento EV (2010) Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One 5(11):e14003

    PubMed  PubMed Central  Google Scholar 

  91. Gorowiec MR, Borthwick LA, Parker SM, Kirby JA, Saretzki GC, Fisher AJ (2012) Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism. Free Radic Biol Med 52(6):1024–1032

    PubMed  CAS  Google Scholar 

  92. Markart P et al (2009) Alveolar oxidative stress is associated with elevated levels of nonenzymatic low-molecular-weight antioxidants in patients with different forms of chronic fibrosing interstitial lung diseases. Antioxid Redox Signal 11(2):227–240

    PubMed  CAS  Google Scholar 

  93. Kinnula VL et al (2006) Extracellular superoxide dismutase has a highly specific localization in idiopathic pulmonary fibrosis/usual interstitial pneumonia. Histopathology 49(1):66–74

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Lazo JS et al (1990) Bleomycin: a pharmacologic tool in the study of the pathogenesis of interstitial pulmonary fibrosis. Pharmacol Ther 47(3):347–358

    PubMed  CAS  Google Scholar 

  95. Sugiura Y (1979) The production of hydroxyl radical from copper(I) complex systems of bleomycin and tallysomycin: comparison with copper(II) and iron(II) systems. Biochem Biophys Res Commun 90(1):375–383

    PubMed  CAS  Google Scholar 

  96. Hansen K, Mossman BT (1987) Generation of superoxide (O2−•) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47(6):1681–1686

    PubMed  CAS  Google Scholar 

  97. Anathy V, Aesif SW, Guala AS et al (2009) Redox amplification of apoptosis by caspase dependent cleavage of glutaredoxin-1 and Sglutathionylation of Fas. J Cell Biol 184(2): 241–252

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Anathy V, Roberson EC, Cunniff BS et al (2012) Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis. Mol Cell Biol 32(17):3464–3478

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Bowler RP et al (2002) Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 282(4):L719–L726

    PubMed  CAS  Google Scholar 

  100. Yamazaki C et al (1997) Effect of lecithinized-superoxide dismutase on the interstitial pneumonia model induced by bleomycin in mice. Jpn J Pharmacol 75(1):97–100

    PubMed  CAS  Google Scholar 

  101. Fattman CL et al (2003) Enhanced bleomycin-induced pulmonary damage in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 35(7):763–771

    PubMed  CAS  Google Scholar 

  102. Bowler RP, Crapo JD (2002) Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 166(12 pt 2):S38–S43

    PubMed  Google Scholar 

  103. Fattman CL et al (2006) Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 40(4):601–607

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Adamson IY, Bowden DH (1984) Role of polymorphonuclear leukocytes in silica-induced pulmonary fibrosis. Am J Pathol 117(1):37–43

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Adamson IY, Letourneau HL, Bowden DH (1989) Enhanced macrophage-fibroblast interactions in the pulmonary interstitium increases fibrosis after silica injection to monocyte-depleted mice. Am J Pathol 134(2):411–418

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Bowden DH, Hedgecock C, Adamson IY (1989) Silica-induced pulmonary fibrosis involves the reaction of particles with interstitial rather than alveolar macrophages. J Pathol 158(1): 73–80

    PubMed  CAS  Google Scholar 

  107. Porter DW et al (2001) Time course of pulmonary response of rats to inhalation of crystalline silica: histological results and biochemical indices of damage, lipidosis, and fibrosis. J Environ Pathol Toxicol Oncol 20(suppl 1):1–14

    PubMed  CAS  Google Scholar 

  108. Adamson IY, Prieditis H (1998) Silica deposition in the lung during epithelial injury potentiates fibrosis and increases particle translocation to lymph nodes. Exp Lung Res 24(3): 293–306

    PubMed  CAS  Google Scholar 

  109. Mariani TJ et al (1996) Localization of type I procollagen gene expression in silica-induced granulomatous lung disease and implication of transforming growth factor-beta as a mediator of fibrosis. Am J Pathol 148(1):151–164

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Poole A (1987) Collagen synthesis in rats with silica-induced pulmonary fibrosis. Arch Toxicol Suppl 11:285–287

    PubMed  CAS  Google Scholar 

  111. Vuorio EI et al (1989) Characterization of excessive collagen production during development of pulmonary fibrosis induced by chronic silica inhalation in rats. Br J Exp Pathol 70(3): 305–315

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Velan GM, Kumar RK, Cohen DD (1993) Pulmonary inflammation and fibrosis following subacute inhalational exposure to silica: determinants of progression. Pathology 25(3): 282–290

    PubMed  CAS  Google Scholar 

  113. Carpenter M et al (2005) Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther 12(8):685–693

    PubMed  CAS  Google Scholar 

  114. Epperly MW et al (1999) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 43(1):169–181

    PubMed  CAS  Google Scholar 

  115. Oury TD et al (2002) Depletion of pulmonary EC-SOD after exposure to hyperoxia. Am J Physiol Lung Cell Mol Physiol 283(4):L777–L784

    PubMed  CAS  Google Scholar 

  116. Oury TD et al (2001) Attenuation of bleomycin-induced pulmonary fibrosis by a catalytic antioxidant metalloporphyrin. Am J Respir Cell Mol Biol 25(2):164–169

    PubMed  CAS  Google Scholar 

  117. Tan RJ et al (2004) Redistribution of pulmonary EC-SOD after exposure to asbestos. J Appl Physiol 97(5):2006–2013

    PubMed  CAS  Google Scholar 

  118. Behr J (2005) Oxidants and antioxidants in idiopathic pulmonary fibrosis. In: Lynch JP (ed) Idiopathic pulmonary fibrosis: lung biology in health and disease. Marcel Dekker, New York, pp 379–396

    Google Scholar 

  119. Shukla A, Ramos-Nino M, Mossman B (2003) Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int J Biochem Cell Biol 35(8):1198–1209

    PubMed  CAS  Google Scholar 

  120. Cheng N et al (1999) Role of transcription factor NF-kappaB in asbestos-induced TNFalpha response from macrophages. Exp Mol Pathol 66(3):201–210

    PubMed  CAS  Google Scholar 

  121. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265(3):659–665

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Uhal BD et al (1995) Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol 269(6 pt 1):L819–L828

    PubMed  CAS  Google Scholar 

  123. Selman M, Pardo A (2004) Matrix metalloproteinases and tissue inhibitors. In: Lynch JP (ed) Lung biology in health and disease: idiopathic pulmonary fibrosis. Marcel Dekker, New York, pp 451–480

    Google Scholar 

  124. Tan RJ et al (2006) Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. Am J Respir Cell Mol Biol 35(3):289–297

    PubMed  CAS  PubMed Central  Google Scholar 

  125. (1995) Pulmonary fibrosis. In: Phan SH, Thrall RS (eds) Lung biology in health and disease. Marcel Dekker, New York

    Google Scholar 

  126. Kumar V, Robbins SL (2007) Robbins basic pathology, vol xiv, 8th edn. Saunders/Elsevier, Philadelphia, PA, p 946

    Google Scholar 

  127. Kuhn C III et al (1989) An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140(6):1693–1703

    PubMed  Google Scholar 

  128. Kuhn C, McDonald JA (1991) The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138(5):1257–1265

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Varki A, Chrispeels MJ (1999) Essentials of glycobiology, vol xvii. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 653

    Google Scholar 

  130. Bernfield M et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    PubMed  CAS  Google Scholar 

  131. Bernfield M et al (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8:365–393

    PubMed  CAS  Google Scholar 

  132. Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20(1):9–22

    PubMed  CAS  Google Scholar 

  133. Gotte M, Echtermeyer F (2003) Syndecan-1 as a regulator of chemokine function. ScientificWorldJournal 3:1327–1331

    PubMed  Google Scholar 

  134. Kainulainen V et al (1998) Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem 273(19):11563–11569

    PubMed  CAS  Google Scholar 

  135. Mollinedo F et al (1997) Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J 327(pt 3):917–923

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Yang Y et al (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282(18):13326–13333

    PubMed  CAS  Google Scholar 

  137. Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275(6):4183–4191

    PubMed  CAS  Google Scholar 

  138. Li Q et al (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111(5):635–646

    PubMed  CAS  Google Scholar 

  139. Zuo F et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 99(9):6292–6297

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Rosas IO et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5(4):e93

    PubMed  PubMed Central  Google Scholar 

  141. Bartlett AH, Hayashida K, Park PW (2007) Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol Cells 24(2):153–166

    PubMed  CAS  Google Scholar 

  142. Fitzgerald ML et al (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148(4):811–824

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Gao F et al (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283(10):6058–6066

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Kliment CR et al (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284(6):3537–3545

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Kliment CR et al (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10(2):261–268

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Bjermer L, Lundgren R, Hallgren R (1989) Hyaluronan and type III procollagen peptide concentrations in bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. Thorax 44(2):126–131

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Petersen SV et al (2004) Extracellular superoxide dismutase (EC-SOD) binds to type i collagen and protects against oxidative fragmentation. J Biol Chem 279(14):13705–13710

    PubMed  CAS  Google Scholar 

  148. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    PubMed  CAS  Google Scholar 

  149. Zaman A et al (2005) Expression and role of the hyaluronan receptor RHAMM in inflammation after bleomycin injury. Am J Respir Cell Mol Biol 33(5):447–454

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Hawkins CL, Rees MD, Davies MJ (2002) Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins. FEBS Lett 510(1–2):41–44

    PubMed  CAS  Google Scholar 

  151. Raats CJ et al (1997) Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephrotic syndrome. J Biol Chem 272(42):26734–26741

    PubMed  CAS  Google Scholar 

  152. Raats CJ, Van Den Born J, Berden JH (2000) Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 57(2):385–400

    PubMed  CAS  Google Scholar 

  153. Rees MD et al (2008) Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 44(12):1973–2001

    PubMed  CAS  Google Scholar 

  154. Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta 1504(2–3):196–219

    PubMed  CAS  Google Scholar 

  155. Yaguchi T et al (1998) Immunohistochemical and gelatin zymography studies for matrix metalloproteinases in bleomycin-induced pulmonary fibrosis. Pathol Int 48(12):954–963

    PubMed  CAS  Google Scholar 

  156. Kinnula VL et al (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172(4):417–422

    PubMed  PubMed Central  Google Scholar 

  157. Fu X et al (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278(31):28403–28409

    PubMed  CAS  Google Scholar 

  158. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784

    PubMed  CAS  Google Scholar 

  159. Hayashi T et al (1996) Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis. Am J Pathol 149(4):1241–1256

    PubMed  CAS  PubMed Central  Google Scholar 

  160. McKeown S et al (2009) MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur Respir J 33(1):77–84

    PubMed  CAS  Google Scholar 

  161. Cabrera S et al (2007) Overexpression of MMP9 in macrophages attenuates pulmonary fibrosis induced by bleomycin. Int J Biochem Cell Biol 39(12):2324–2338

    PubMed  CAS  Google Scholar 

  162. Murthy S et al (2009) Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 297(5): L846–L855

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Mossman BT et al (1990) Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Respir Dis 141(5 pt 1):1266–1271

    PubMed  CAS  Google Scholar 

  164. Meyer A, Buhl R, Magnussen H (1994) The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary fibrosis. Eur Respir J 7(3):431–436

    PubMed  CAS  Google Scholar 

  165. Behr J et al (2002) Intracellular glutathione and bronchoalveolar cells in fibrosing alveolitis: effects of N-acetylcysteine. Eur Respir J 19(5):906–911

    PubMed  CAS  Google Scholar 

  166. Borok Z et al (1991) Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis. Lancet 338(8761):215–216

    PubMed  CAS  Google Scholar 

  167. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243(21):5753–5760

    PubMed  CAS  Google Scholar 

  168. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    PubMed  CAS  Google Scholar 

  169. Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A 79(24):7634–7638

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Marklund SL, Holme E, Hellner L (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126(1):41–51

    PubMed  CAS  Google Scholar 

  171. Fattman CL et al (2000) Purification and characterization of extracellular superoxide dismutase in mouse lung. Biochem Biophys Res Commun 275(2):542–548

    PubMed  CAS  Google Scholar 

  172. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35(3):236–256

    PubMed  CAS  Google Scholar 

  173. Oury TD, Day BJ, Crapo JD (1996) Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med 20(7):957–965

    PubMed  CAS  Google Scholar 

  174. Demchenko IT et al (2002) Regulation of the brain’s vascular responses to oxygen. Circ Res 91(11):1031–1037

    PubMed  CAS  Google Scholar 

  175. Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37(12):2466–2471

    PubMed  CAS  Google Scholar 

  176. Oury TD et al (1992) Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci U S A 89(20):9715–9719

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Adachi T et al (1992) The heparin binding site of human extracellular-superoxide dismutase. Arch Biochem Biophys 297(1):155–161

    PubMed  CAS  Google Scholar 

  178. Adachi T, Yamnamoto M, Hara H (2001) Heparin-affinity of human extracellular-superoxide dismutase in the brain. Biol Pharm Bull 24(2):191–193

    PubMed  CAS  Google Scholar 

  179. Karlsson K, Lindahl U, Marklund SL (1988) Binding of human extracellular superoxide dismutase C to sulphated glycosaminoglycans. Biochem J 256(1):29–33

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Karlsson K, Marklund SL (1988) Extracellular-superoxide dismutase association with cell surface-bound sulfated glucosaminoglycans. Basic Life Sci 49:647–650

    PubMed  CAS  Google Scholar 

  181. Tan RJ et al (2006) Inflammatory cells as a source of airspace extracellular superoxide dismutase after pulmonary injury. Am J Respir Cell Mol Biol 34(2):226–232

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Fattman CL et al (2001) Altered expression of extracellular superoxide dismutase in mouse lung after bleomycin treatment. Free Radic Biol Med 31(10):1198–1207

    PubMed  CAS  Google Scholar 

  183. Walter N, Collard HR, King TE Jr (2006) Current perspectives on the treatment of idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3(4):330–338

    PubMed  CAS  Google Scholar 

  184. Flaherty KR et al (2002) Clinical significance of histological classification of idiopathic interstitial pneumonia. Eur Respir J 19(2):275–283

    PubMed  CAS  Google Scholar 

  185. Raghu G et al (1991) Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis 144(2):291–296

    PubMed  CAS  Google Scholar 

  186. Zisman DA et al (2000) Cyclophosphamide in the treatment of idiopathic pulmonary fibrosis: a prospective study in patients who failed to respond to corticosteroids. Chest 117(6): 1619–1626

    PubMed  CAS  Google Scholar 

  187. King TE Jr et al (2009) Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 374(9685):222–228

    PubMed  CAS  Google Scholar 

  188. Modriansky M et al (2002) Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants? Toxicology 177(1):105–117

    PubMed  CAS  Google Scholar 

  189. Mourelle M, Meza MA (1989) Colchicine prevents D-galactosamine-induced hepatitis. J Hepatol 8(2):165–172

    PubMed  CAS  Google Scholar 

  190. Rennard SI et al (1988) Colchicine suppresses the release of fibroblast growth factors from alveolar macrophages in vitro. The basis of a possible therapeutic approach of the fibrotic disorders. Am Rev Respir Dis 137(1):181–185

    PubMed  CAS  Google Scholar 

  191. Zhang L et al (1992) The protective effect of colchicine on bleomycin-induced pulmonary fibrosis in rats. Chin Med Sci J 7(1):58–60

    PubMed  CAS  Google Scholar 

  192. Douglas WW, Ryu JH, Schroeder DR (2000) Idiopathic pulmonary fibrosis: impact of oxygen and colchicine, prednisone, or no therapy on survival. Am J Respir Crit Care Med 161(4 pt 1):1172–1178

    PubMed  CAS  Google Scholar 

  193. Giri SN et al (1999) Effects of pirfenidone on the generation of reactive oxygen species in vitro. J Environ Pathol Toxicol Oncol 18(3):169–177

    PubMed  CAS  Google Scholar 

  194. Misra HP, Rabideau C (2000) Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol Cell Biochem 204(1–2):119–126

    PubMed  CAS  Google Scholar 

  195. Mitani Y et al (2008) Superoxide scavenging activity of pirfenidone-iron complex. Biochem Biophys Res Commun 372(1):19–23

    PubMed  CAS  Google Scholar 

  196. Iyer SN, Gurujeyalakshmi G, Giri SN (1999) Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 291(1):367–373

    PubMed  CAS  Google Scholar 

  197. Iyer SN et al (1998) Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp Lung Res 24(1):119–132

    PubMed  CAS  Google Scholar 

  198. Raghu G et al (1999) Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. Am J Respir Crit Care Med 159(4 pt 1):1061–1069

    PubMed  CAS  Google Scholar 

  199. Cuzzocrea S et al (2007) Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 292(5):L1095–L1104

    PubMed  CAS  Google Scholar 

  200. Demedts M et al (2005) High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 353(21):2229–2242

    PubMed  CAS  Google Scholar 

  201. Behr J et al (2009) Lung function in idiopathic pulmonary fibrosis—extended analyses of the IFIGENIA trial. Respir Res 10:101

    PubMed  PubMed Central  Google Scholar 

  202. Tomioka H et al (2005) A pilot study of aerosolized N-acetylcysteine for idiopathic pulmonary fibrosis. Respirology 10(4):449–455

    PubMed  Google Scholar 

  203. IPF Clinical Research Network et al (2012) Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 366:1968–1977

    Google Scholar 

  204. Day BJ (2008) Antioxidants as potential therapeutics for lung fibrosis. Antioxid Redox Signal 10(2):355–370

    PubMed  CAS  PubMed Central  Google Scholar 

  205. Day BJ (2004) Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today 9(13):557–566

    PubMed  CAS  Google Scholar 

  206. Vujaskovic Z et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33(6):857–863

    PubMed  CAS  Google Scholar 

  207. Thabut G et al (2003) Survival benefit of lung transplantation for patients with idiopathic pulmonary fibrosis. J Thorac Cardiovasc Surg 126(2):469–475

    PubMed  Google Scholar 

  208. Williams A et al (1999) Compromised antioxidant status and persistent oxidative stress in lung transplant recipients. Free Radic Res 30(5):383–393

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Portions of this writing were reprinted with permission from Elsevier Publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrine R. Kliment M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kliment, C.R., Oury, T.D. (2014). Pulmonary Fibrosis and Oxidative Stress. In: Ganguly, N., Jindal, S., Biswal, S., Barnes, P., Pawankar, R. (eds) Studies on Respiratory Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0497-6_10

Download citation

Publish with us

Policies and ethics