Introduction to Oxidative Stress and Antioxidant Therapy in Respiratory Disorder

  • Francesco Galli
  • Massimo Conese
  • Luigi Maiuri
  • Roberto Gambari
  • Desirée Bartolini
  • Marta Piroddi
  • Silvia Ciffolilli
  • Giulio Cabrini
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Impairments of redox balance are presently known to be involved in many aspects of respiratory disorders. these are responsible for either acute or chronic events of damage in cells and tissues, thus leading to oxidative stress. The control of thiol redox in a number of signaling and transcriptional elements provides a fundamental regulatory role to cellular reactive oxygen species (ROS). These are for instance key players of the inflammatory signaling and participate in the remodeling of stressed tissues by differentiation, apoptosis, and autophagy of cellular components. New clues are also emerging on the role of ROS as pacesetters of metabolic pathways and aging of the entire organism. Besides the direct oxidant effects on cellular constituents, the alterations of these and other physiological roles of ROS can further contribute to develop oxidative stress. In this respect, the investigation of novel oxidative stress biomarkers may have translational impact on clinical monitoring of chronic respiratory diseases such as chronic obstructive pulmonary disease, bronchial asthma, and cystic fibrosis, also paving the way for the identification of innovative antioxidant therapies.

This introduction wishes to open the readers’ interest on these issues that are further expanded in the following chapters of this book dealing with oxidative stress mechanisms and remedies for specific respiratory diseases.

Keywords

Reactive Oxygen Species Chronic Obstructive Pulmonary Disease Cystic Fibrosis Chronic Obstructive Pulmonary Disease Patient Idiopathic Pulmonary Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the Italian Society for Cystic Fibrosis and the Italian Cystic Fibrosis Research Foundation for support, and all the other members of the Italian Working Group on Inflammation in Cystic Fibrosis (Alessandra Bragonzi, Elena Bravo, Salvatore Cuzzocrea, Maria Cristina Dechecchi, Alessandra De Alessandri, Virgilio Evangelista, Vincenzina Lucidi, Antonietta Lambiase, Antonio Manca, Paola Melotti, Laura Minicucci, Andrea Motta, Donatella Pietraforte, Alfonso Pompella, Serena Quattrucci, Roberta Rizzo, Roberto Rizzo, Mario Romano, Claudio Sorio, Riccardina Tesse) for helpful discussions.

References

  1. 1.
    Abdulrahman BA, Khweek AA et al (2011) Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 7(11):1359–1370PubMedCentralPubMedGoogle Scholar
  2. 2.
    Albertini MC, Olivieri F et al (2011) Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0). J Biomed Inform 44(4):615–620PubMedGoogle Scholar
  3. 3.
    Aldridge RE, Chan T et al (2002) Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med 33(6):847–856PubMedGoogle Scholar
  4. 4.
    Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662PubMedGoogle Scholar
  5. 5.
    Amaral MD (2011) Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Curr Drug Targets 12(5):683–693PubMedGoogle Scholar
  6. 6.
    Antczak A, Nowak D et al (1997) Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients. Eur Respir J 10(6):1235–1241PubMedGoogle Scholar
  7. 7.
    Antczak A, Kurmanowska Z et al (2000) Inhaled glucocorticosteroids decrease hydrogen peroxide level in expired air condensate in asthmatic patients. Respir Med 94(5):416–421PubMedGoogle Scholar
  8. 8.
    Antczak A, Montuschi P et al (2002) Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 166(3):301–306PubMedGoogle Scholar
  9. 9.
    Antelmann H, Helmann JD (2011) Thiol-based redox switches and gene regulation. Antioxid Redox Signal 14(6):1049–1063PubMedCentralPubMedGoogle Scholar
  10. 10.
    Back EI, Frindt C et al (2004) Antioxidant deficiency in cystic fibrosis: when is the right time to take action? Am J Clin Nutr 80(2):374–384PubMedGoogle Scholar
  11. 11.
    Bai XY, Ma Y et al (2011) miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261PubMedCentralPubMedGoogle Scholar
  12. 12.
    Baragetti I, Furiani S et al (2006) Role of vitamin E-coated membrane in reducing advanced glycation end products in hemodialysis patients: a pilot study. Blood Purif 24(4):369–376PubMedGoogle Scholar
  13. 13.
    Baraldi E, Carraro S et al (2003) Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 58(6):505–509PubMedCentralPubMedGoogle Scholar
  14. 14.
    Barnes PJ (2004) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56(4):515–548PubMedGoogle Scholar
  15. 15.
    Barnes PJ (2011) Pathophysiology of allergic inflammation. Immunol Rev 242(1):31–50PubMedGoogle Scholar
  16. 16.
    Barreto M, Villa MP et al (2009) 8-Isoprostane in exhaled breath condensate and exercise-induced bronchoconstriction in asthmatic children and adolescents. Chest 135(1):66–73PubMedGoogle Scholar
  17. 17.
    Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77(8):1303–1315PubMedGoogle Scholar
  18. 18.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313PubMedGoogle Scholar
  19. 19.
    Beier J, Beeh KM et al (2004) Increased concentrations of glutathione in induced sputum of patients with mild or moderate allergic asthma. Ann Allergy Asthma Immunol 92(4):459–463PubMedGoogle Scholar
  20. 20.
    Beinert T, Binder D et al (1999) Increased levels of vascular endothelial growth factor in bronchoalveolar lavage of patients with bronchial carcinoma effect of tumour activity and oxidative stress due to radio-chemotherapy? Eur J Med Res 4(8):328–334PubMedGoogle Scholar
  21. 21.
    Best K, McCoy K et al (2004) Copper enzyme activities in cystic fibrosis before and after copper supplementation plus or minus zinc. Metabolism 53(1):37–41PubMedGoogle Scholar
  22. 22.
    Betti M, Minelli A et al (2006) Antiproliferative effects of tocopherols (vitamin E) on murine glioma C6 cells: homologue-specific control of PKC/ERK and cyclin signaling. Free Radic Biol Med 41(3):464–472PubMedGoogle Scholar
  23. 23.
    Biernacki WA, Kharitonov SA et al (2003) Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 58(4):294–298PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bishop C, Hudson VM et al (2005) A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis. Chest 127(1):308–317PubMedGoogle Scholar
  25. 25.
    Bocchino M, Agnese S et al (2010) Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One 5(11):e14003PubMedCentralPubMedGoogle Scholar
  26. 26.
    Boncoeur E, Criq VS et al (2008) Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: potential mechanism for excessive IL-8 expression. Int J Biochem Cell Biol 40(3):432–446PubMedGoogle Scholar
  27. 27.
    Bondi CD, McKeon RM et al (2008) MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J Pineal Res 44(3):288–298PubMedGoogle Scholar
  28. 28.
    Calabrese V, Scapagnini G et al (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25(3–4):437–444PubMedGoogle Scholar
  29. 29.
    Cantin AM, White TB et al (2007) Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11–12, 2003. Free Radic Biol Med 42(1):15–31PubMedCentralPubMedGoogle Scholar
  30. 30.
    Celli BR, MacNee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6):932–946PubMedGoogle Scholar
  31. 31.
    Chan EC, Jiang F et al (2009) Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 122(2):97–108PubMedGoogle Scholar
  32. 32.
    Chen J, Kinter M et al (2008) Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS One 3(10):e3367PubMedCentralPubMedGoogle Scholar
  33. 33.
    Cohen HN, Hay ID et al (1982) Serum immunoreactive melatonin in boys with delayed puberty. Clin Endocrinol (Oxf) 17(5):517–521Google Scholar
  34. 34.
    Collins CE, Quaggiotto P et al (1999) Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis. Lipids 34(6):551–556PubMedGoogle Scholar
  35. 35.
    Comandini A, Rogliani P et al (2009) Biomarkers of lung damage associated with tobacco smoke in induced sputum. Respir Med 103(11):1592–1613PubMedGoogle Scholar
  36. 36.
    Comhair SA, Erzurum SC (2010) Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 12(1):93–124PubMedCentralPubMedGoogle Scholar
  37. 37.
    Comhair SA, Lewis MJ et al (1999) Increased glutathione and glutathione peroxidase in lungs of individuals with chronic beryllium disease. Am J Respir Crit Care Med 159(6):1824–1829PubMedGoogle Scholar
  38. 38.
    Comhair SA, Bhathena PR et al (2000) Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet 355(9204):624PubMedGoogle Scholar
  39. 39.
    Comhair SA, Ricci KS et al (2005) Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med 172(3):306–313PubMedCentralPubMedGoogle Scholar
  40. 40.
    Comhair SA, Xu W et al (2005) Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. Am J Pathol 166(3):663–674PubMedCentralPubMedGoogle Scholar
  41. 41.
    Corradi M, Folesani G et al (2003) Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med 167(3):395–399PubMedGoogle Scholar
  42. 42.
    Corradi M, Pignatti P et al (2004) Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur Respir J 24(6):1011–1017PubMedCentralPubMedGoogle Scholar
  43. 43.
    Crestani B, Besnard V et al (2011) Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 43(8):1086–1089PubMedGoogle Scholar
  44. 44.
    Dauletbaev N, Viel K et al (2004) Glutathione and glutathione peroxidase in sputum samples of adult patients with cystic fibrosis. J Cyst Fibros 3(2):119–124PubMedGoogle Scholar
  45. 45.
    Dauletbaev N, Fischer P et al (2009) A phase II study on safety and efficacy of high-dose N-acetylcysteine in patients with cystic fibrosis. Eur J Med Res 14(8):352–358PubMedCentralPubMedGoogle Scholar
  46. 46.
    Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703(2):93–109PubMedGoogle Scholar
  47. 47.
    Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759PubMedGoogle Scholar
  48. 48.
    De Minicis S, Brenner DA (2007) NOX in liver fibrosis. Arch Biochem Biophys 462(2):266–272PubMedCentralPubMedGoogle Scholar
  49. 49.
    Dekhuijzen PN, Aben KK et al (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154(3 Pt 1):813–816PubMedGoogle Scholar
  50. 50.
    Diebold I, Petry A et al (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21(12):2087–2096PubMedCentralPubMedGoogle Scholar
  51. 51.
    Dodig S, Richter D et al (2011) Inflammatory markers in childhood asthma. Clin Chem Lab Med 49(4):587–599PubMedGoogle Scholar
  52. 52.
    Dohm CP, Kermer P et al (2008) Aggregopathy in neurodegenerative diseases: mechanisms and therapeutic implication. Neurodegener Dis 5(6):321–338PubMedGoogle Scholar
  53. 53.
    Domej W, Foldes-Papp Z et al (2006) Chronic obstructive pulmonary disease and oxidative stress. Curr Pharm Biotechnol 7(2):117–123PubMedGoogle Scholar
  54. 54.
    Drost EM, Skwarski KM et al (2005) Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 60(4):293–300PubMedCentralPubMedGoogle Scholar
  55. 55.
    Duthie GG, Arthur JR et al (1991) Effects of smoking and vitamin E on blood antioxidant status. Am J Clin Nutr 53(4 Suppl):1061S–1063SPubMedGoogle Scholar
  56. 56.
    Dworski R, Roberts LJ 2nd et al (2001) Assessment of oxidant stress in allergic asthma by measurement of the major urinary metabolite of F2-isoprostane, 15-F2t-IsoP (8-iso-PGF2alpha). Clin Exp Allergy 31(3):387–390PubMedGoogle Scholar
  57. 57.
    Emelyanov A, Fedoseev G et al (2002) Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur Respir J 20(3):596–600PubMedGoogle Scholar
  58. 58.
    Fischer B, Voynow J (2000) Neutrophil elastase induces MUC5AC messenger RNA expression by an oxidant-dependent mechanism. Chest 117(5 Suppl 1):317S–320SPubMedGoogle Scholar
  59. 59.
    Fischer BM, Pavlisko E et al (2011) Pathogenic triad in COPD: oxidative stress, protease–antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 6:413–421PubMedCentralPubMedGoogle Scholar
  60. 60.
    Formanek W, Inci D et al (2002) Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J 19(3):487–491PubMedGoogle Scholar
  61. 61.
    Galli F, Piroddi M et al (2005) Oxidative stress and reactive oxygen species. Contrib Nephrol 149:240–260PubMedGoogle Scholar
  62. 62.
    Galli F, Battistoni A et al (2012) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822(5):690–713PubMedGoogle Scholar
  63. 63.
    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956PubMedGoogle Scholar
  64. 64.
    Ghosh S, Janocha AJ et al (2006) Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol 176(9):5587–5597PubMedGoogle Scholar
  65. 65.
    Giannoni E, Taddei ML et al (2010) Src redox regulation: again in the front line. Free Radic Biol Med 49(4):516–527PubMedGoogle Scholar
  66. 66.
    Griese M, Ramakers J et al (2004) Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 169(7):822–828PubMedGoogle Scholar
  67. 67.
    Griese M, Kappler M et al (2013) Inhalation treatment with glutathione in patients with cystic fibrosis: a randomized clinical trial. Am J Respir Crit Care Med 188(1):83–89PubMedGoogle Scholar
  68. 68.
    Gumral N, Naziroglu M et al (2009) Antioxidant enzymes and melatonin levels in patients with bronchial asthma and chronic obstructive pulmonary disease during stable and exacerbation periods. Cell Biochem Funct 27(5):276–283PubMedGoogle Scholar
  69. 69.
    Guven A, Yavuz O et al (2006) Effects of melatonin on streptozotocin-induced diabetic liver injury in rats. Acta Histochem 108(2):85–93PubMedGoogle Scholar
  70. 70.
    Halappanavar S, Wu D et al (2011) Pulmonary gene and microRNA expression changes in mice exposed to benzo(a)pyrene by oral gavage. Toxicology 285(3):133–141PubMedGoogle Scholar
  71. 71.
    Hanifin JP, Stewart KT et al (2006) High-intensity red light suppresses melatonin. Chronobiol Int 23(1–2):251–268PubMedGoogle Scholar
  72. 72.
    Hartl D, Starosta V et al (2005) Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs. Free Radic Biol Med 39(4):463–472PubMedGoogle Scholar
  73. 73.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531PubMedGoogle Scholar
  74. 74.
    Hecker L, Vittal R et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hecker L, Cheng J et al (2012) Targeting NOX enzymes in pulmonary fibrosis. Cell Mol Life Sci 69(14):2365–2371PubMedCentralPubMedGoogle Scholar
  76. 76.
    Heidenfelder B, Johnson M et al (2010) Increased plasma reactive oxidant levels and their relationship to blood cells, total IgE, and allergen-specific IgE levels in asthmatic children. J Asthma 47(1):106–111PubMedGoogle Scholar
  77. 77.
    Ho LP, Faccenda J et al (1999) Expired hydrogen peroxide in breath condensate of cystic fibrosis patients. Eur Respir J 13(1):103–106PubMedGoogle Scholar
  78. 78.
    Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396(1):120–124PubMedGoogle Scholar
  79. 79.
    Horvath I, Donnelly LE et al (1998) Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am J Respir Crit Care Med 158(4):1042–1046PubMedGoogle Scholar
  80. 80.
    Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418PubMedGoogle Scholar
  81. 81.
    Iuliano L, Monticolo R et al (2009) Association of cholesterol oxidation and abnormalities in fatty acid metabolism in cystic fibrosis. Am J Clin Nutr 90(3):477–484PubMedGoogle Scholar
  82. 82.
    Jobsis Q, Raatgeep HC et al (2000) Hydrogen peroxide and nitric oxide in exhaled air of children with cystic fibrosis during antibiotic treatment. Eur Respir J 16(1):95–100PubMedGoogle Scholar
  83. 83.
    Joppa P, Petrasova D et al (2007) Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 119(13–14):428–434PubMedGoogle Scholar
  84. 84.
    Junttila MR, Li SP et al (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22(4):954–965PubMedGoogle Scholar
  85. 85.
    Kelly TL, Neri DF et al (1999) Nonentrained circadian rhythms of melatonin in submariners scheduled to an 18-hour day. J Biol Rhythms 14(3):190–196PubMedGoogle Scholar
  86. 86.
    Keskin O, Balaban S et al (2012) Relationship between exhaled leukotriene and 8-isoprostane levels and asthma severity, asthma control level, and asthma control test score. Allergol Immunopathol (Madr). doi: 10.1016/j.aller.2012.09.003; pii:S0301-0546(12)00277-7
  87. 87.
    Kim EJ, Yoo YG et al (2008) Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Arterioscler Thromb Vasc Biol 28(10):1796–1802PubMedGoogle Scholar
  88. 88.
    Kinnula VL, Ilumets H et al (2007) 8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD. Eur Respir J 29(1):51–55PubMedGoogle Scholar
  89. 89.
    Kirkin V, McEwan DG et al (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269PubMedGoogle Scholar
  90. 90.
    Kluchova Z, Petrasova D et al (2007) The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol Res 56(1):51–56PubMedGoogle Scholar
  91. 91.
    Ko FW, Lau CY et al (2006) Exhaled breath condensate levels of 8-isoprostane, growth related oncogene alpha and monocyte chemoattractant protein-1 in patients with chronic obstructive pulmonary disease. Respir Med 100(4):630–638PubMedGoogle Scholar
  92. 92.
    Korolchuk VI, Mansilla A et al (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33(4):517–527PubMedCentralPubMedGoogle Scholar
  93. 93.
    Kostikas K, Papatheodorou G et al (2003) Oxidative stress in expired breath condensate of patients with COPD. Chest 124(4):1373–1380PubMedGoogle Scholar
  94. 94.
    Kozomara A, Griffiths-Jones S (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157PubMedCentralPubMedGoogle Scholar
  95. 95.
    Kroemer G, Marino G et al (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293PubMedCentralPubMedGoogle Scholar
  96. 96.
    Kurooka H, Kato K et al (1997) Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics 39(3):331–339PubMedGoogle Scholar
  97. 97.
    Laguna TA, Sontag MK et al (2008) Decreased total serum coenzyme-Q10 concentrations: a longitudinal study in children with cystic fibrosis. J Pediatr 153(3):402–407PubMedGoogle Scholar
  98. 98.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43(3):332–347PubMedCentralPubMedGoogle Scholar
  99. 99.
    Lepage G, Champagne J et al (1996) Supplementation with carotenoids corrects increased lipid peroxidation in children with cystic fibrosis. Am J Clin Nutr 64(1):87–93PubMedGoogle Scholar
  100. 100.
    Lezo A, Biasi F et al (2013) Oxidative stress in stable cystic fibrosis patients: do we need higher antioxidant plasma levels? J Cyst Fibros 12(1):35–41PubMedGoogle Scholar
  101. 101.
    Libetta C, Sepe V et al (2011) Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem 44(14–15):1189–1198PubMedGoogle Scholar
  102. 102.
    Lloyd-Still JD, Ganther HE (1980) Selenium and glutathione peroxidase levels in cystic fibrosis. Pediatrics 65(5):1010–1012PubMedGoogle Scholar
  103. 103.
    Louhelainen N, Rytila P et al (2009) Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulm Med 9:25PubMedCentralPubMedGoogle Scholar
  104. 104.
    Loukides S, Bouros D et al (2002) The relationships among hydrogen peroxide in expired breath condensate, airway inflammation, and asthma severity. Chest 121(2):338–346PubMedGoogle Scholar
  105. 105.
    Loukides S, Kontogianni K et al (2011) Exhaled breath condensate in asthma: from bench to bedside. Curr Med Chem 18(10):1432–1443PubMedGoogle Scholar
  106. 106.
    Luciani A, Villella VR et al (2009) SUMOylation of tissue transglutaminase as link between oxidative stress and inflammation. J Immunol 183(4):2775–2784PubMedGoogle Scholar
  107. 107.
    Luciani A, Villella VR et al (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875PubMedGoogle Scholar
  108. 108.
    Luciani A, Villella VR et al (2012) Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on DeltaF508 cystic fibrosis transmembrane conductance regulator. Autophagy 8(11):1657–1672PubMedCentralPubMedGoogle Scholar
  109. 109.
    Lucidi V, Ciabattoni G et al (2008) Exhaled 8-isoprostane and prostaglandin E(2) in patients with stable and unstable cystic fibrosis. Free Radic Biol Med 45(6):913–919PubMedGoogle Scholar
  110. 110.
    Luo SF, Chang CC et al (2009) Activation of ROS/NF-kappaB and Ca2+/CaM kinase II are necessary for VCAM-1 induction in IL-1beta-treated human tracheal smooth muscle cells. Toxicol Appl Pharmacol 237(1):8–21PubMedGoogle Scholar
  111. 111.
    Mabb AM, Wuerzberger-Davis SM et al (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8(9):986–993PubMedGoogle Scholar
  112. 112.
    MacNee W (2005) Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(1):50–60PubMedGoogle Scholar
  113. 113.
    Magenta A, Cencioni C et al (2011) miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18(10):1628–1639PubMedCentralPubMedGoogle Scholar
  114. 114.
    Maiuri L, Luciani A et al (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180(11):7697–7705PubMedGoogle Scholar
  115. 115.
    Mak JC, Leung HC et al (2004) Systemic oxidative and antioxidative status in Chinese patients with asthma. J Allergy Clin Immunol 114(2):260–264PubMedGoogle Scholar
  116. 116.
    Malorni W, Farrace MG et al (2008) Type 2 transglutaminase in neurodegenerative diseases: the mitochondrial connection. Curr Pharm Des 14(3):278–288PubMedGoogle Scholar
  117. 117.
    Mao L, Yuan L et al (2010) Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res 12(6):R107PubMedCentralPubMedGoogle Scholar
  118. 118.
    Margaritis I, Rousseau AS (2008) Does physical exercise modify antioxidant requirements? Nutr Res Rev 21(1):3–12PubMedGoogle Scholar
  119. 119.
    Marshall KA, Reiter RJ et al (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21(3):307–315PubMedGoogle Scholar
  120. 120.
    Mazur W, Stark H et al (2009) Comparison of 8-isoprostane and interleukin-8 in induced sputum and exhaled breath condensate from asymptomatic and symptomatic smokers. Respiration 78(2):209–216PubMedGoogle Scholar
  121. 121.
    McGrath LT, Mallon P et al (1999) Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax 54(6):518–523PubMedCentralPubMedGoogle Scholar
  122. 122.
    McGrath LT, Patrick R et al (2000) Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur Respir J 16(6):1065–1069PubMedGoogle Scholar
  123. 123.
    Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452(7188):709–711PubMedGoogle Scholar
  124. 124.
    Mizushima N, Levine B et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075PubMedCentralPubMedGoogle Scholar
  125. 125.
    Mondino C, Ciabattoni G et al (2004) Effects of inhaled corticosteroids on exhaled leukotrienes and prostanoids in asthmatic children. J Allergy Clin Immunol 114(4):761–767PubMedGoogle Scholar
  126. 126.
    Montano M, Cisneros J et al (2010) Malondialdehyde and superoxide dismutase correlate with FEV(1) in patients with COPD associated with wood smoke exposure and tobacco smoking. Inhal Toxicol 22(10):868–874PubMedGoogle Scholar
  127. 127.
    Monteseirin J, Bonilla I et al (2001) Elevated secretion of myeloperoxidase by neutrophils from asthmatic patients: the effect of immunotherapy. J Allergy Clin Immunol 107(4):623–626PubMedGoogle Scholar
  128. 128.
    Montuschi P, Corradi M et al (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160(1):216–220PubMedGoogle Scholar
  129. 129.
    Montuschi P, Kharitonov SA et al (2000) Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55(3):205–209PubMedCentralPubMedGoogle Scholar
  130. 130.
    Montuschi P, Mondino C et al (2006) Effects of a leukotriene receptor antagonist on exhaled leukotriene E4 and prostanoids in children with asthma. J Allergy Clin Immunol 118(2):347–353PubMedGoogle Scholar
  131. 131.
    Muratsu-Ikeda S, Nangaku M et al (2012) Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS One 7(7):e41462PubMedCentralPubMedGoogle Scholar
  132. 132.
    Mutze S, Hebling U et al (2003) Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1. J Biol Chem 278(42):40542–40549PubMedGoogle Scholar
  133. 133.
    Nadeem A, Chhabra SK et al (2003) Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 111(1):72–78PubMedGoogle Scholar
  134. 134.
    Nadeem A, Raj HG et al (2005) Increased oxidative stress and altered levels of antioxidants in chronic obstructive pulmonary disease. Inflammation 29(1):23–32PubMedGoogle Scholar
  135. 135.
    Nash EF, Stephenson A et al (2009) Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis. Cochrane Database Syst Rev (1): CD007168Google Scholar
  136. 136.
    Neumann CA, Cao J et al (2009) Peroxiredoxin 1 and its role in cell signaling. Cell Cycle 8(24):4072–4078PubMedGoogle Scholar
  137. 137.
    Neve J, Van Geffel R et al (1983) Plasma and erythrocyte zinc, copper and selenium in cystic fibrosis. Acta Paediatr Scand 72(3):437–440PubMedGoogle Scholar
  138. 138.
    Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97PubMedCentralPubMedGoogle Scholar
  139. 139.
    Paniker NV, Srivastava SK et al (1970) Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta 215(3):456–460PubMedGoogle Scholar
  140. 140.
    Pantano C, Reynaert NL et al (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8(9–10):1791–1806PubMedGoogle Scholar
  141. 141.
    Paredi P, Kharitonov SA et al (2000) Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med 162(4 Pt 1):1450–1454PubMedGoogle Scholar
  142. 142.
    Park HS, Kim SR et al (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38PubMedGoogle Scholar
  143. 143.
    Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5(1):47–62PubMedGoogle Scholar
  144. 144.
    Pauwels RA, Buist AS et al (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 163(5):1256–1276PubMedGoogle Scholar
  145. 145.
    Perrin-Nadif R, Auburtin G et al (1996) Blood antioxidant enzymes as markers of exposure or effect in coal miners. Occup Environ Med 53(1):41–45PubMedCentralPubMedGoogle Scholar
  146. 146.
    Pignone AM, Rosso AD et al (2006) Melatonin is a safe and effective treatment for chronic pulmonary and extrapulmonary sarcoidosis. J Pineal Res 41(2):95–100PubMedGoogle Scholar
  147. 147.
    Rabbani ZN, Mi J et al (2010) Hypoxia inducible factor 1alpha signaling in fractionated radiation-induced lung injury: role of oxidative stress and tissue hypoxia. Radiat Res 173(2):165–174PubMedCentralPubMedGoogle Scholar
  148. 148.
    Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28(1):219–242PubMedGoogle Scholar
  149. 149.
    Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16(3):534–554PubMedGoogle Scholar
  150. 150.
    Rahman I, Morrison D et al (1996) Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 154(4 Pt 1):1055–1060PubMedGoogle Scholar
  151. 151.
    Rahman I, Swarska E et al (2000) Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? Thorax 55(3):189–193PubMedCentralPubMedGoogle Scholar
  152. 152.
    Ramracheya RD, Muller DS et al (2008) Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res 44(3):273–279PubMedGoogle Scholar
  153. 153.
    Range SP, Dunster C et al (1999) Treatment of pulmonary exacerbations of cystic fibrosis leads to improved antioxidant status. Eur Respir J 13(3):560–564PubMedGoogle Scholar
  154. 154.
    Ray PD, Huang BW et al (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990PubMedCentralPubMedGoogle Scholar
  155. 155.
    Reid DW, Misso N et al (2007) Oxidative stress and lipid-derived inflammatory mediators during acute exacerbations of cystic fibrosis. Respirology 12(1):63–69PubMedGoogle Scholar
  156. 156.
    Renner S, Rath R et al (2001) Effects of beta-carotene supplementation for six months on clinical and laboratory parameters in patients with cystic fibrosis. Thorax 56(1):48–52PubMedCentralPubMedGoogle Scholar
  157. 157.
    Reynaert NL, van der Vliet A et al (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103(35):13086–13091PubMedCentralPubMedGoogle Scholar
  158. 158.
    Rhee SG, Kang SW et al (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17(2):183–189PubMedGoogle Scholar
  159. 159.
    Robroeks CM, Rosias PP et al (2008) Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children. Pediatr Allergy Immunol 19(7):652–659PubMedGoogle Scholar
  160. 160.
    Robroeks CM, Roozeboom MH et al (2010) Structural lung changes, lung function, and non-invasive inflammatory markers in cystic fibrosis. Pediatr Allergy Immunol 21(3):493–500PubMedGoogle Scholar
  161. 161.
    Roum JH, Buhl R et al (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 75(6):2419–2424PubMedGoogle Scholar
  162. 162.
    Roum JH, Borok Z et al (1999) Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 87(1):438–443PubMedGoogle Scholar
  163. 163.
    Rust P, Eichler I et al (2000) Long-term oral beta-carotene supplementation in patients with cystic fibrosis—effects on antioxidative status and pulmonary function. Ann Nutr Metab 44(1):30–37PubMedGoogle Scholar
  164. 164.
    Sackesen C, Ercan H et al (2008) A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J Allergy Clin Immunol 122(1):78–85PubMedGoogle Scholar
  165. 165.
    Sadowska-Woda I, Rachel M et al (2011) Nutritional supplement attenuates selected oxidative stress markers in pediatric patients with cystic fibrosis. Nutr Res 31(7):509–518PubMedGoogle Scholar
  166. 166.
    Sagel SD, Sontag MK et al (2011) Effect of an antioxidant-rich multivitamin supplement in cystic fibrosis. J Cyst Fibros 10(1):31–36PubMedGoogle Scholar
  167. 167.
    Sahiner UM, Birben E et al (2011) Oxidative stress in asthma. World Allergy Organ J 4(10):151–158PubMedCentralPubMedGoogle Scholar
  168. 168.
    Samitas K, Chorianopoulos D et al (2009) Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Med 103(5):750–756PubMedGoogle Scholar
  169. 169.
    Sandrini A, Ferreira IM et al (2003) Effect of montelukast on exhaled nitric oxide and nonvolatile markers of inflammation in mild asthma. Chest 124(4):1334–1340PubMedGoogle Scholar
  170. 170.
    Sangokoya C, Telen MJ et al (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348PubMedCentralPubMedGoogle Scholar
  171. 171.
    Schieven GL, de Fex H et al (2002) Hypochlorous acid activates tyrosine phosphorylation signal pathways leading to calcium signaling and TNFalpha production. Antioxid Redox Signal 4(3):501–507PubMedGoogle Scholar
  172. 172.
    Shahid SK, Kharitonov SA et al (2005) Exhaled 8-isoprostane in childhood asthma. Respir Res 6:79PubMedCentralPubMedGoogle Scholar
  173. 173.
    Shinohara K, Uchiyama M et al (2000) Menstrual changes in sleep, rectal temperature and melatonin rhythms in a subject with premenstrual syndrome. Neurosci Lett 281(2–3):159–162PubMedGoogle Scholar
  174. 174.
    Sies H (1985) Oxidative stress. Academic, LondonGoogle Scholar
  175. 175.
    Sluimer JC, Gasc JM et al (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 51(13):1258–1265PubMedGoogle Scholar
  176. 176.
    Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122(1):9–12PubMedGoogle Scholar
  177. 177.
    Suzuki S, Matsukura S et al (2008) Increase in reactive oxygen metabolite level in acute exacerbations of asthma. Int Arch Allergy Immunol 146(Suppl 1):67–72PubMedGoogle Scholar
  178. 178.
    Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798PubMedGoogle Scholar
  179. 179.
    Taccioli C, Fabbri E et al (2009) UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Res 37(Database issue):D41–D48PubMedCentralPubMedGoogle Scholar
  180. 180.
    Tang H, Lee M et al (2012) Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. FASEB J 26(11):4710–4721PubMedCentralPubMedGoogle Scholar
  181. 181.
    Textorius O, Nilsson SE (1987) Effects of intraocular irrigation with melatonin on the c-wave of the direct current electroretinogram and on the standing potential of the eye in albino rabbits. Doc Ophthalmol 65(1):97–111PubMedGoogle Scholar
  182. 182.
    Thomas JN, Smith-Sonneborn J (1997) Supplemental melatonin increases clonal lifespan in the protozoan Paramecium tetraurelia. J Pineal Res 23(3):123–130PubMedGoogle Scholar
  183. 183.
    Thomson E, Brennan S et al (2010) Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radic Biol Med 49(9):1354–1360PubMedGoogle Scholar
  184. 184.
    Thor PJ, Krolczyk G et al (2007) Melatonin and serotonin effects on gastrointestinal motility. J Physiol Pharmacol 58(Suppl 6):97–103PubMedGoogle Scholar
  185. 185.
    Thulasingam S, Massilamany C et al (2011) miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells. Mol Cell Biochem 352(1–2):181–188PubMedGoogle Scholar
  186. 186.
    Tirouvanziam R, Conrad CK et al (2006) High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A 103(12):4628–4633PubMedCentralPubMedGoogle Scholar
  187. 187.
    Tkacova R, Kluchova Z et al (2007) Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med 101(8):1670–1676PubMedGoogle Scholar
  188. 188.
    Toledano MB, Planson AG et al (2010) Reining in H(2)O(2) for safe signaling. Cell 140(4):454–456PubMedGoogle Scholar
  189. 189.
    Tsukagoshi H, Shimizu Y et al (2000) Evidence of oxidative stress in asthma and COPD: potential inhibitory effect of theophylline. Respir Med 94(6):584–588PubMedGoogle Scholar
  190. 190.
    Van Biervliet S, Van Biervliet JP et al (2006) Serum zinc in patients with cystic fibrosis at diagnosis and after one year of therapy. Biol Trace Elem Res 112(3):205–211PubMedGoogle Scholar
  191. 191.
    Van Biervliet S, Van Biervliet JP et al (2007) Serum zinc concentrations in cystic fibrosis patients aged above 4 years: a cross-sectional evaluation. Biol Trace Elem Res 119(1):19–26PubMedGoogle Scholar
  192. 192.
    van Montfort RL, Congreve M et al (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423(6941):773–777PubMedGoogle Scholar
  193. 193.
    Vazquez-Torres A (2012) Redox active thiol sensors of oxidative and nitrosative stress. Antioxid Redox Signal 17(9):1201–1214PubMedCentralPubMedGoogle Scholar
  194. 194.
    Villella VR, Esposito S et al (2013) Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death Differ 20(8):1101–1115PubMedGoogle Scholar
  195. 195.
    Visca A, Bishop CT et al (2008) Improvement in clinical markers in CF patients using a reduced glutathione regimen: an uncontrolled, observational study. J Cyst Fibros 7(5):433–436PubMedGoogle Scholar
  196. 196.
    Vlasic Z, Dodig S et al (2009) Iron and ferritin concentrations in exhaled breath condensate of children with asthma. J Asthma 46(1):81–85PubMedGoogle Scholar
  197. 197.
    Wedes SH, Khatri SB et al (2009) Noninvasive markers of airway inflammation in asthma. Clin Transl Sci 2(2):112–117PubMedCentralPubMedGoogle Scholar
  198. 198.
    Wedes SH, Wu W et al (2011) Urinary bromotyrosine measures asthma control and predicts asthma exacerbations in children. J Pediatr 159(2):248–255 e1PubMedCentralPubMedGoogle Scholar
  199. 199.
    Wetterberg L, Hayes DK et al (1987) Circadian rhythm of melatonin in the brain of the face fly, Musca autumnalis De Geer. Chronobiologia 14(4):377–381PubMedGoogle Scholar
  200. 200.
    Winklhofer-Roob BM, Puhl H et al (1995) Enhanced resistance to oxidation of low density lipoproteins and decreased lipid peroxide formation during beta-carotene supplementation in cystic fibrosis. Free Radic Biol Med 18(5):849–859PubMedGoogle Scholar
  201. 201.
    Winklhofer-Roob BM, Tiran B et al (1998) Effects of pancreatic enzyme preparations on erythrocyte glutathione peroxidase activities and plasma selenium concentrations in cystic fibrosis. Free Radic Biol Med 25(2):242–249PubMedGoogle Scholar
  202. 202.
    Wood LG, Fitzgerald DA et al (2002) Increased plasma fatty acid concentrations after respiratory exacerbations are associated with elevated oxidative stress in cystic fibrosis patients. Am J Clin Nutr 75(4):668–675PubMedGoogle Scholar
  203. 203.
    Wood LG, Gibson PG et al (2003) Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur Respir J 21(1):177–186PubMedGoogle Scholar
  204. 204.
    Wu W, Samoszuk MK et al (2000) Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest 105(10):1455–1463PubMedCentralPubMedGoogle Scholar
  205. 205.
    Yu D, dos Santos CO et al (2010) miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev 24(15):1620–1633PubMedCentralPubMedGoogle Scholar
  206. 206.
    Zanconato S, Carraro S et al (2004) Leukotrienes and 8-isoprostane in exhaled breath condensate of children with stable and unstable asthma. J Allergy Clin Immunol 113(2):257–263PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francesco Galli
    • 1
  • Massimo Conese
    • 2
  • Luigi Maiuri
    • 2
    • 3
  • Roberto Gambari
    • 4
  • Desirée Bartolini
    • 1
  • Marta Piroddi
    • 1
  • Silvia Ciffolilli
    • 1
  • Giulio Cabrini
    • 5
  1. 1.Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
  3. 3.European Institute for Research in Cystic FibrosisMilanItaly
  4. 4.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
  5. 5.Department of Pathology and DiagnosticsUniversity Hospital of VeronaVeronaItaly

Personalised recommendations