Advertisement

Performance Measurements

  • Saman Atapattu
  • Chintha Tellambura
  • Hai Jiang
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

The energy detection process is affected by the fluctuations of the propagation channel, which occur due to path loss, large-scale fading and small-scale fading. Channel correlation is also a major impact when energy detectors are implemented in cooperative spectrum sensing networks [43].

References

  1. 1.
    Alam S., Odejide O., Olabiyi O., Annamalai A. (2011) Further results on area under the ROC curve of energy detectors over generalized fading channels. In: the 34th IEEE Sarnoff Symposium, Princeton, 3–4 May 2011.Google Scholar
  2. 2.
    Annamalai, A., Olabiyi, O., Alam, S., Odejide, O., Vaman, D. (2011) Unified analysis of energy detection of unknown signals over generalized fading channels. In: Proceedings of International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, 4–8 July 2011.Google Scholar
  3. 3.
    Annamalai, A., Tellambura, C. (2008) A simple exponential integral representation of the generalized Marcum Q-function Q M(a, b) for real-order M with applications. In: Proceedings of IEEE Military Communications Conference (MILCOM), San Diego, 17–19 Nov 2008.Google Scholar
  4. 4.
    Atapattu, S., Tellambura, C., Jiang, H. (2009) Energy detection of primary signals over ημ fading channels. In: Proceedings of International Conference Industrial and Information Systems (ICIIS), Kandy, 28–31 Dec 2009.Google Scholar
  5. 5.
    Atapattu, S., Tellambura, C., Jiang, H. (2009) Relay based cooperative spectrum sensing in cognitive radio networks. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Hawaii, 30 Nov- 4 Dec 2009.Google Scholar
  6. 6.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Analysis of area under the ROC curve of energy detection. IEEE T on Wireless Communications 9(3): 1216–1225.CrossRefGoogle Scholar
  7. 7.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Performance of an energy detector over channels with both multipath fading and shadowing. IEEE T on Wireless Communications 9(12): 3662–3670.CrossRefGoogle Scholar
  8. 8.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Performance of energy detection: A complementary AUC approach. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Miami, 6–10 Dec 2010.Google Scholar
  9. 9.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Representation of composite fading and shadowing distributions by using mixtures of gamma distributions. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Sydney, 18–22 Apr 2010.Google Scholar
  10. 10.
    Atapattu, S., Tellambura, C., Jiang, H. (2011) Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE T on Wireless Communications 10(4): 1232–1241.CrossRefGoogle Scholar
  11. 11.
    Atapattu, S., Tellambura, C., Jiang, H. (2011) MGF based analysis of area under the ROC curve in energy detection. IEEE Communications Letters 15(12): 1301–1303.CrossRefGoogle Scholar
  12. 12.
    Atapattu, S., Tellambura, C., Jiang, H. (2011) A mixture gamma distribution to model the SNR of wireless channels. IEEE T on Wireless Communications 10(12): 4193–4203.CrossRefGoogle Scholar
  13. 13.
    Atapattu, S., Tellambura, C., Jiang, H. (2011) Spectrum sensing via energy detector in low SNR. In: Proceedings of IEEE International Conference on Communications (ICC), Kyoto, 5–9 June 2011.Google Scholar
  14. 14.
    Atapattu, S., Tellambura, C., Jiang, H. (2011) Spectrum sensing in low SNR: Diversity combining and cooperative communications. In: Proceedings of International Conference Industrial and Information Systems (ICIIS), Kandy, 13–17 Aug 2011.Google Scholar
  15. 15.
    Banjade, V., Rajatheva, N., Tellambura, C. (2012) Performance analysis of energy detection with multiple correlated antenna cognitive radio in Nakagami-m fading. IEEE Communications Letters 16(4): 502–505.CrossRefGoogle Scholar
  16. 16.
    Banta, E. D. (1978) Energy detection of unknown deterministic signals in the presence of jamming. IEEE T on Aerospace and Electronic Systems AES-14(2): 384–386.CrossRefGoogle Scholar
  17. 17.
    Barrett, H. H., Abbey, C. K., Clarkson, E. (1998) Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions. J on Optical Society of America A 15(6): 1520–1535.CrossRefGoogle Scholar
  18. 18.
    Bello, P., Ehrman, L. (1969) Performance of an energy detection FSK digital modem for troposcatter links. IEEE T on Communications Technology 17(2): 192–200.CrossRefGoogle Scholar
  19. 19.
    Clarkson, E. (2002) Bounds on the area under the receiver operating characteristic curve for the ideal observer. J on Optical Society America A 19(10): 1963–1968.CrossRefGoogle Scholar
  20. 20.
    Cordeiro, C., Challapali, K., Birru, D., Shankar, S. N. (2006) IEEE 802.22: An introduction to the first wireless standard based on cognitive radios. J of Communications (JCM) 1(1): 38–47.Google Scholar
  21. 21.
    Dhungana, Y., Tellambura, C. (2012) New simple approximations for error probability and outage in fading. IEEE Communications Letters 16(11): 1760–1763.CrossRefGoogle Scholar
  22. 22.
    Dhungana, Y., Tellambura, C. (2013) Rational Gauss-Chebyshev quadratures for wireless performance analysis. IEEE Wireless Communications Letters 16(2): 215–218.CrossRefGoogle Scholar
  23. 23.
    Digham, F. F., Alouini, M. S., Simon, M. K. (2003) On the energy detection of unknown signals over fading channels. In: Proceedings of IEEE International Conference on Communications (ICC), Anchorage, 11–15 May 2003.Google Scholar
  24. 24.
    Digham, F. F., Alouini, M. S., Simon, M. K. (2007) On the energy detection of unknown signals over fading channels. IEEE T on Communications 55(1): 21–24.CrossRefGoogle Scholar
  25. 25.
    Dillard, G. M. (1973) Pulse-position modulation based on energy detection. IEEE T on Aerospace and Electronic Systems AES-9(4): 499–503.CrossRefGoogle Scholar
  26. 26.
    Dillard, R. A. (1979) Detectability of spread-spectrum signals. IEEE T on Aerospace and Electronic Systems AES-15(4), 526–537.CrossRefGoogle Scholar
  27. 27.
    Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters 27(8): 861–874.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Gradshteyn, I. S., Ryzhik, I. M. (2000) Table of Integrals, Series, and Products, 6th edn, Academic Press, Inc.zbMATHGoogle Scholar
  29. 29.
    Green, D. M. (1964) General prediction relating Yes-No and forced-choice results. J on Acoustics Society America A 36(5): 1042–1042.CrossRefGoogle Scholar
  30. 30.
    Hanley, J. A., Mcneil, B. J. (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1): 29–36.Google Scholar
  31. 31.
    Hauptschein, A., Knapp, T. (1979) Maximum likelihood energy detection of M-ary orthogonal signals. IEEE T on Aerospace and Electronic Systems AES-15(2): 292–299.CrossRefGoogle Scholar
  32. 32.
    Herath, S. P., Rajatheva, N. (2008) Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, 30 Nov-4 Dec 2008.Google Scholar
  33. 33.
    Herath, S. P., Rajatheva, N., Tellambura, C. (2009) On the energy detection of unknown deterministic signal over Nakagami channels with selection combining. In: Canadian Conference on Electrical and Computing Engineering (CCECE), Newfoundland, 3–6 May 2009.Google Scholar
  34. 34.
    Herath, S. P., Rajatheva, N., Tellambura, C. (2009) Unified approach for energy detection of unknown deterministic signal in cognitive radio over fading channels. In: Proceedings of IEEE International Conference on Communications (ICC) Workshops, Dresden, 14–18 June 2009.Google Scholar
  35. 35.
    Herath, S. P., Rajatheva, N., Tellambura, C. (2011) Energy detection of unknown signals in fading and diversity reception. IEEE T on Communications 59(9): 2443–2453.CrossRefGoogle Scholar
  36. 36.
    Karmeshu, Agrawal, R. (2007) On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels. Wireless Communications and Mobile Computing 7(1): 1–7.Google Scholar
  37. 37.
    Kostylev, V. I. (2002) Energy detection of a signal with random amplitude. In: Proceedings of IEEE International Conference on Communications (ICC), New York City, 28 Apr-2 May 2002.Google Scholar
  38. 38.
    Krantz, S. G. (1999) Handbook of Complex Variables, 1st Ed, Birkhäuser Boston.Google Scholar
  39. 39.
    Li, R., Kam, P. Y., Fu, Y. (2010) New representations and bounds for the generalized Marcum Q-function via a geometric approach, and an application. IEEE T on Communications 58(1): 157–169.CrossRefGoogle Scholar
  40. 40.
    Liu, A., Schisterman, E. F., Wu, C. (2005) Nonparametric estimation and hypothesis testing on the partial area under receiver operating characteristic curves. Communications in Statistics - Theory and Methods 34(9): 2077–2088.CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Mihos, S. K., Kapinas, V. M., Karagiannidis, G. K. (2008) Lower and upper bounds for the generalized Marcum and Nuttall Q-functions. In: Proceedings of International Symposium on Wireless and Pervasive Computing (ISWPC), Santorini, 7–9 May 2008.Google Scholar
  42. 42.
    Min, A. W., Shin, K. G., Hu, X. (2011) Secure cooperative sensing in IEEE 802.22 WRANs using shadow fading correlation. IEEE T on Mobile Computing 10(10): 1434–1447.CrossRefGoogle Scholar
  43. 43.
    Molisch, A. F., Greenstein, L. J., Shafi, M. (2009) Propagation issues for cognitive radio. Proceedings of the IEEE 97(5): 787–804.CrossRefGoogle Scholar
  44. 44.
    Nuttall, A. H. (1972) Some integrals involving the Q-function. Naval underwater Systems Center (NUSC) technical report.Google Scholar
  45. 45.
    Nuttall, A. H. (1974) Some integrals involving the Q M-function. Naval underwater Systems Center (NUSC) technical report.Google Scholar
  46. 46.
    Olabiyi, O., Annamalai, A. (2011) Further results on the performance of energy detector over generalized fading channels. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, 11–14 Sept 2011.Google Scholar
  47. 47.
    Pandharipande, A., Linnartz, J. P. M. G. (2007) Performance analysis of primary user detection in a multiple antenna cognitive radio. In: Proceedings of IEEE International Conference on Communications (ICC), Glasgow, 24–28 June 2007.Google Scholar
  48. 48.
    Park, K. Y. (1978) Performance evaluation of energy detectors. IEEE T on Aerospace and Electronic Systems AES-14(2): 237–241.CrossRefGoogle Scholar
  49. 49.
    Shapiro, J. H. (1999) Bounds on the area under the ROC curve. J on Optical Society America A 16(1): 53–57.CrossRefGoogle Scholar
  50. 50.
    Shellhammer, S. J. (2008) Spectrum sensing in IEEE 802.22. In: 1st IAPR Workshop on Cognitive Information Processing, Santorini (Thera), 9–10 June 2008.Google Scholar
  51. 51.
    Shellhammer, S. J., Sadek, A. K., Zhang, W. (2009) Technical challenges for cognitive radio in the TV white space spectrum. In: Proceedings of Information Theory and Applications (ITA) Workshop, California, 8–13 Feb 2009.Google Scholar
  52. 52.
    Simon, M. K. (2002) The Nuttall Q function - its relation to the Marcum Q function and its application in digital communication performance evaluation. IEEE T on Communications 50(11): 1712–1715.CrossRefGoogle Scholar
  53. 53.
    Simon, M. K., Alouini, M. S. (2000) Exponential-type bounds on the generalized Marcum Q-function with application to error probability analysis over fading channels. IEEE T on Communications 48(3): 359–366.CrossRefGoogle Scholar
  54. 54.
    Simon, M. K., Alouini, M. S. (2005) Digital Communication over Fading Channels 2nd Ed, New York: Wiley.Google Scholar
  55. 55.
    Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., Caldwell, W. (2009) IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications M 47(1): 130–138.CrossRefGoogle Scholar
  56. 56.
    Sun, H., Laurenson, D., Wang, C. X. (2010) Computationally tractable model of energy detection performance over slow fading channels. IEEE Communications Letters 14(10): 924–926.CrossRefGoogle Scholar
  57. 57.
    Tellambura, C., Annamalai, A., Bhargava, V. K. (2003) Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading. IEEE T on Communications 51(4): 539–542.CrossRefGoogle Scholar
  58. 58.
    Urkowitz, H. (1967) Energy detection of unknown deterministic signals. Proceedings of the IEEE 55(4): 523–531.CrossRefGoogle Scholar
  59. 59.
    Urkowitz, H. (1969) Energy detection of a random process in colored Gaussian noise. IEEE T on Aerospace and Electronic Systems AES-5(2): 156–162.CrossRefGoogle Scholar
  60. 60.
    Wang, Q., Yue, D. W. (2009) A general parameterization quantifying performance in energy detection. IEEE Signal Processing Letters 16(8): 699–702.CrossRefzbMATHGoogle Scholar
  61. 61.
    Wang, Z., Giannakis, G. B. (2003) A simple and general parameterization quantifying performance in fading channels. IEEE T on Communications 51(8): 1389–1398.CrossRefGoogle Scholar
  62. 62.
    Wickens, T. D. (2002) Elementary Signal Detection Theory, New York: Oxford Univ. Press.Google Scholar
  63. 63.
    Wolfram Research. The Wolfram functions site: http://functions.wolfram.com.Google Scholar
  64. 64.
    Zhang, J., Mueller, S. T. (2005) A note on ROC analysis and non-parametric estimate of sensitivity. Psychometrika 70(1): 203–212.CrossRefMathSciNetGoogle Scholar
  65. 65.
    Zhang, W., Sadek, A. K., Shen, C., Shellhammer, S. J. (2010) Adaptive spectrum sensing. In: Proceedings of Information Theory and Applications (ITA) Workshop, San Diego, 31 Jan- 5 Feb 2010.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Saman Atapattu
    • 1
  • Chintha Tellambura
    • 1
  • Hai Jiang
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations