Advertisement

Conventional Energy Detector

  • Saman Atapattu
  • Chintha Tellambura
  • Hai Jiang
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

As mentioned before, the energy detector senses spectrum holes by determining whether the primary signal is absent or present in a given frequency slot. The energy detector typically operates without prior knowledge of the primary signal parameters. Its key parameters, including detection threshold, number of samples, and estimated noise power, determine the detection performance.

References

  1. 1.
    Atapattu, S., Tellambura, C., Jiang, H. (2009) Energy detection of primary signals over ημ fading channels. In: Proceedings of International Conference Industrial and Information Systems (ICIIS), Kandy, 28–31 Dec 2009.Google Scholar
  2. 2.
    Atapattu, S., Tellambura, C., Jiang, H. (2009) Relay based cooperative spectrum sensing in cognitive radio networks. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Hawaii, 30 Nov- 4 Dec 2009.Google Scholar
  3. 3.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Analysis of area under the ROC curve of energy detection. IEEE T on Wireless Communications 9(3): 1216–1225.CrossRefGoogle Scholar
  4. 4.
    Atapattu, S., Tellambura, C., Jiang, H. (2010) Performance of an energy detector over channels with both multipath fading and shadowing. IEEE T on Wireless Communications 9(12): 3662–3670.CrossRefGoogle Scholar
  5. 5.
    Cabric, D., Tkachenko, A., Brodersen, R. W. (2006) Experimental study of spectrum sensing based on energy detection and network cooperation. In: Proceedings of International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, 5 Aug 2006.Google Scholar
  6. 6.
    Chen, Y. (2010) Improved energy detector for random signals in Gaussian noise. IEEE T on Wireless Communications 9(2): 558–563.CrossRefGoogle Scholar
  7. 7.
    Ciftci, S., Torlak, M. (2008) A comparison of energy detectability models for spectrum sensing. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, 30 Nov-4 Dec 2008.Google Scholar
  8. 8.
    Cordeiro, C., Challapali, K., Birru, D., Shankar, S. N. (2006) IEEE 802.22: An introduction to the first wireless standard based on cognitive radios. J of Communications (JCM) 1(1): 38–47.Google Scholar
  9. 9.
    Digham, F. F., Alouini, M. S., Simon, M. K. (2003) On the energy detection of unknown signals over fading channels. In: Proceedings of IEEE International Conference on Communications (ICC), Anchorage, 11–15 May 2003.Google Scholar
  10. 10.
    Digham, F. F., Alouini, M. S., Simon, M. K. (2007) On the energy detection of unknown signals over fading channels. IEEE T on Communications 55(1): 21–24.CrossRefGoogle Scholar
  11. 11.
    ECMA-International (2012) MAC and PHY for operation in TV white space. http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-392.pdf.
  12. 12.
    Gradshteyn, I. S., Ryzhik, I. M. (2000) Table of Integrals, Series, and Products, 6th edn, Academic Press, Inc.zbMATHGoogle Scholar
  13. 13.
    Granelli, F., Pawelczak, P., Prasad, R. V., Subbalakshmi, K. P., Chandramouli, R., Hoffmeyer, J. A. and Berger, H. S. (2010) Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC41 efforts and other activities. IEEE Communications M 48(1): 71–79.CrossRefGoogle Scholar
  14. 14.
    Herath, S. P., Rajatheva, N. (2008) Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, 30 Nov-4 Dec 2008.Google Scholar
  15. 15.
    Herath, S. P., Rajatheva, N., Tellambura, C. (2009) On the energy detection of unknown deterministic signal over Nakagami channels with selection combining. In: Canadian Conference on Electrical and Computing Engineering (CCECE), Newfoundland, 3–6 May 2009.Google Scholar
  16. 16.
    Herath, S. P., Rajatheva, N., Tellambura, C. (2009) Unified approach for energy detection of unknown deterministic signal in cognitive radio over fading channels. In: Proceedings of IEEE International Conference on Communications (ICC) Workshops, Dresden, 14–18 June 2009.Google Scholar
  17. 17.
    Kostylev, V. I. (2002) Energy detection of a signal with random amplitude. In: Proceedings of IEEE International Conference on Communications (ICC), New York City, 28 Apr-2 May 2002.Google Scholar
  18. 18.
    Liang, Y. C., Zeng, Y., Peh, E. C. Y., Hoang, A. T. (2007) Sensing-throughput tradeoff for cognitive radio networks. In: Proceedings of IEEE International Conference on Communications (ICC), Glasgow, 24–28 June 2007.Google Scholar
  19. 19.
    Liang, Y. C., Zeng, Y., Peh, E. C. Y., Hoang, A. T. (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE T on Wireless Communications 7(4): 1326–1337.CrossRefGoogle Scholar
  20. 20.
    Mariani, A., Giorgetti, A., Chiani, M. (2011) Effects of noise power estimation on energy detection for cognitive radio applications. IEEE T on Communications 59(12): 3410–3420.CrossRefGoogle Scholar
  21. 21.
    Mills, R., Prescott, G. (1996) A comparison of various radiometer detection models. IEEE T on Aerospace and Electronic Systems 32(1): 467–473.CrossRefGoogle Scholar
  22. 22.
    Nuttall, A. H. (1974) Some integrals involving the Q M-function. Naval underwater Systems Center (NUSC) technical report.Google Scholar
  23. 23.
    Papoulis, A., Pillai, S. U. (2002) Probability, Random Variables and Stochastic Processes, McGraw-Hill Companies, Inc.Google Scholar
  24. 24.
    Quan, Z., Cui, S., Sayed, A. H., Poor, H. V. (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE T on Signal Processing 57(3); 1128–1140.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sahai, A., Hoven, N., Tandra, R. (2004) Some fundamental limits on cognitive radio. In: Proceedings of 42nd Allerton Conference on Communication, Control, and Computing, Monticello, 29 Sept-1 Oct 2004.Google Scholar
  26. 26.
    Sahai, A., Tandra, R., Mishra, S. M., Hoven, N. (2006) Fundamental design tradeoffs in cognitive radio systems. In: Proceedings of International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, 5 Aug 2006.Google Scholar
  27. 27.
    Salt, J. E., Nguyen, H. H. (2008) Performance prediction for energy detection of unknown signals. IEEE T on Vehicular Technology 57(6), 3900–3904.CrossRefGoogle Scholar
  28. 28.
    Shellhammer, S. J. (2008) Spectrum sensing in IEEE 802.22. In: 1st IAPR Workshop on Cognitive Information Processing, Santorini (Thera), 9–10 June 2008.Google Scholar
  29. 29.
    Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., Caldwell, W. (2009) IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications M 47(1): 130–138.CrossRefGoogle Scholar
  30. 30.
    Sum, C. S., Harada, H., Kojima, F., Lan, Z., Funada, R. (2011) Smart utility networks in TV white space. IEEE Communications M 49(7), 132–139.CrossRefGoogle Scholar
  31. 31.
    Tandra, R., Sahai, A. (2005) Fundamental limits on detection in low SNR under noise uncertainty. In: International Conference on Wireless Networks, Communications and Mobile Computing (WCNM), Wuhan, 13–16 June 2005Google Scholar
  32. 32.
    Tandra, R., Sahai, A. (2008) SNR walls for signal detection. IEEE J on Selected Topics in Signal Processing 2(1): 4–17.CrossRefGoogle Scholar
  33. 33.
    Trees, H. L. V. (2001) Detection, Estimation, and Modulation Theory, Part I, Wiley-Interscience.CrossRefGoogle Scholar
  34. 34.
    Urkowitz, H. (1967) Energy detection of unknown deterministic signals. Proceedings of the IEEE 55(4): 523–531.CrossRefGoogle Scholar
  35. 35.
    Vijayandran, L., Dharmawansa, P., Ekman, T., Tellambura, C. (2012) Analysis of aggregate interference and primary system performance in finite area cognitive radio networks. IEEE T on Communications 60(7): 1811–1822.CrossRefGoogle Scholar
  36. 36.
    Wu, J. Y., Wang, C. H., Wang, T. Y. (2011) Performance analysis of energy detection based spectrum sensing with unknown primary signal arrival time. IEEE T on Communications 59(7): 1779–1784.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Saman Atapattu
    • 1
  • Chintha Tellambura
    • 1
  • Hai Jiang
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations