Skip to main content

Strigolactones: Biosynthesis, Synthesis and Functions in Plant Growth and Stress Responses

  • Chapter
  • First Online:
Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications

Abstract

Strigolactones, terpenoid lactones derived from carotenoids, are plant hormones with various biological roles. They act in both shoots and roots to regulate several aspects of plant growth and architecture. They also affect plant communication in the rhizosphere. In this chapter, we will present the role of strigolactones as plant hormones and highlight the known modes of strigolactone signalling and transport and their crosstalk with other plant hormones. Also, we will review growing bodies of evidence that strigolactones contribute to plant response to nutrient and light conditions. Furthermore, the recent development in strigolactone synthetic chemistry and their future applications for the benefit of agriculture will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell Online 19:458–472

    Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A 108:20242–20247

    PubMed Central  PubMed  CAS  Google Scholar 

  • Akiyama K, K-i M, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    PubMed  CAS  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P et al (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    PubMed  CAS  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M et al (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    PubMed  CAS  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S et al (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    PubMed  CAS  Google Scholar 

  • Asami T, Ito S (2012) Design and synthesis of function regulators of plant hormones and their application to physiology and genetics. J Synth Org Chem Jpn 70:36–49

    CAS  Google Scholar 

  • Bates TR, Lynch JP (2000) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87:964–970

    PubMed  CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    PubMed  CAS  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    PubMed  CAS  Google Scholar 

  • Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J 11:339–345

    CAS  Google Scholar 

  • Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG et al (2009) A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Org Biomol Chem 7:3413–3420

    PubMed  CAS  Google Scholar 

  • Bieleski R (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    CAS  Google Scholar 

  • Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    PubMed  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    PubMed  CAS  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    PubMed  CAS  Google Scholar 

  • Boyer FD et al (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159(4):1524–1544

    PubMed Central  PubMed  CAS  Google Scholar 

  • Braun N, de Saint GA, Pillot J-P, S B-M, Dalmais M, Antoniadi I et al (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28

    PubMed  CAS  Google Scholar 

  • Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ 26:1839–1850

    CAS  Google Scholar 

  • Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    PubMed  CAS  Google Scholar 

  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J et al (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913

    PubMed  CAS  Google Scholar 

  • Delaux P-M, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E et al (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    PubMed  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    PubMed  CAS  Google Scholar 

  • Drummond RSM, Martinez-Sanchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD et al (2009) Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol 151:1867–1877

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009a) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    PubMed  CAS  Google Scholar 

  • Dun EA, Hanan J, Beveridge CA (2009b) Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell Online 21:3459–3472

    CAS  Google Scholar 

  • Dun EA, de Saint GA, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dun EA, de Saint GA, Rameau C, Beveridge CA (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant 6:128–140

    PubMed  CAS  Google Scholar 

  • Ei-D A, Salama A, Wareing PF (1979) Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). J Exp Bot 30:971–981

    Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944

    PubMed Central  PubMed  CAS  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152:1914–1927

    PubMed Central  PubMed  CAS  Google Scholar 

  • Foo E, Turnbull CGN, Beveridge CA (2001) Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene rAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell Online 17:464–474

    CAS  Google Scholar 

  • Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A et al (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143:1418–1428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T (2011) New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg Med Chem Lett 21:4905–4908

    PubMed  CAS  Google Scholar 

  • Fukui K, Ito S, Asami T (2013) Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant 22:88–99

    Google Scholar 

  • Gaiji N, Cardinale F, Prandi C, Bonfante P, Ranghino G (2012) The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Res Notes 5:307

    PubMed Central  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CAS  Google Scholar 

  • Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD et al (2012) DAD2 Is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    PubMed  CAS  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    PubMed  CAS  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B et al (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    PubMed Central  PubMed  CAS  Google Scholar 

  • Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634

    PubMed  CAS  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA et al (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kagiyama M, Hirano Y, Mori T, Kim S-Y, Kyozuka J, Seto Y et al (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160

    PubMed  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C et al (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    PubMed  CAS  Google Scholar 

  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J et al (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924

    PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S et al (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I et al (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    PubMed  CAS  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    PubMed  CAS  Google Scholar 

  • Koltai H, Beveridge CA (2013) Strigolactones and the coordinated development of shoot and root. Long-distance systemic signaling and communication in plants. Springer, Berlin Heidelberg, pp 189–204

    Google Scholar 

  • Koltai H, Kapulnik Y (2013) Unveiling signaling events in root responses to strigolactone. Mol Plant 6:589–591

    PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S, Lekalla S et al (2010a) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    CAS  Google Scholar 

  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S et al (2010b) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koltai H, Matusova R, Kapulnik Y (2012) Strigolactones in root exudates as a signal in symbiotic and parasitic interactions. In: Vivanco JM, BaluÅ¡ka F (eds) Secretions and exudates in biological systems, vol 12. Springer, Berlin Heidelberg, pp 49–73

    Google Scholar 

  • Koren D, Resnick N, Gati EM, Belausov E, Weininger S, Kapulnik Y et al (2013) Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytol 198:866–874

    PubMed  CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    PubMed  CAS  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    PubMed  CAS  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247

    Google Scholar 

  • Liang J, Zhao L, Challis R, Leyser O (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J Exp Bot 61:3069–3078

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu WZ, Wu C, Fu YP, Hu GC, Si HM, Zhu L et al (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    PubMed  CAS  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W-C, Hooiveld GJEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    PubMed Central  PubMed  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    PubMed  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    PubMed  CAS  Google Scholar 

  • Marhavy P, Vanstraelen M, De Rybel B, Zhaojun D, Bennett MJ, Beeckman T et al (2012) Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J 32:149–158

    PubMed Central  PubMed  Google Scholar 

  • Martín AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, De La Peña A et al (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    PubMed  Google Scholar 

  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T et al (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465

    PubMed  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mayzlish Gati E, De Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer P et al (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, Lemcoff JH et al (2010) Strigolactones are positive regulators of light-harvesting genes in tomato. J Exp Bot 61:3129–3136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miyashima S, Sebastian J, Lee J-Y, Helariutta Y (2012) Stem cell function during plant vascular development. EMBO J 32:178–193

    PubMed Central  PubMed  Google Scholar 

  • Morris SE, Turnbull CGN, Murfet IC, Beveridge CA (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213

    PubMed Central  PubMed  CAS  Google Scholar 

  • Morris SE, Cox MCH, Ross JJ, Krisantini S, Beveridge CA (2005) Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol 138:1665–1672

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mouchel CF, Leyser O (2007) Novel phytohormones involved in long-range signaling. Curr Opin Plant Biol 10:473–476

    PubMed  CAS  Google Scholar 

  • Muller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    PubMed Central  PubMed  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M et al (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW et al (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci 108:8897–8902

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    PubMed  CAS  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    PubMed  CAS  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    PubMed  CAS  Google Scholar 

  • Perez-Torres C-A, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M et al (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed Central  PubMed  CAS  Google Scholar 

  • Perilli S, Di Mambro R, Sabatini S (2012) Growth and development of the root apical meristem. Curr Opin Plant Biol 15:17–23

    PubMed  CAS  Google Scholar 

  • Prandi C, Occhiato EG, Tabasso S, Bonfante P, Novero M, Scarpi D et al (2011) New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching. Eur J Org Chem 2011:3781–3793

    CAS  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K et al (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    PubMed  CAS  Google Scholar 

  • Rasmussen A, Mason M, De Cuyper C, Brewer PB, Herold S, Agusti J et al (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reizelman A, Zwanenburg B (2002) An efficient enantioselective synthesis of strigolactones with a palladium-catalyzed asymmetric coupling as the key step. Eur J Org Chem 2002:810–814

    Google Scholar 

  • Reizelman A, Scheren M, Nefkens GHL, Zwanenburg B (2000) Synthesis of all eight stereoisomers of the germination stimulant strigol. Synthesis 2000:1944–1951

    Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2010) Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS One 6:9

    Google Scholar 

  • Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G (2012) Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 30:1047–1058

    PubMed  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sachs T, Thimann KV (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54(1):136–144

    CAS  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG et al (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL et al (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett 22:3743–3745

    PubMed  CAS  Google Scholar 

  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J Cell Mol Biol 76:1–9

    CAS  Google Scholar 

  • Schwartz SH, Qin XQ, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945

    PubMed  CAS  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen H, Zhu L, Bu Q-Y, Huq E (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol Plant 5:224–236

    CAS  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SM, Waters MT (2012) Strigolactones: destruction-dependent perception? Curr Biol 22:R924–R927

    PubMed  CAS  Google Scholar 

  • Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL et al (2005) The decreased apical dominance1/petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E et al (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y et al (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Matsuoka M (2010) The perception of gibberellins: clues from receptor structure. Curr Opin Plant Biol 13:503–508

    PubMed  CAS  Google Scholar 

  • Ueno K, Fujiwara M, Nomura S, Mizutani M, Sasaki M, Takikawa H, Sugimoto Y (2011) Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds. J Agric Food Chem 59:9226–9231

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012a) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW et al (2012b) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y et al (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Structural diversity and distribution of strigolactones in the plant kingdom. J Pestic Sci 34:302–305

    CAS  Google Scholar 

  • Yoneyama K, Xie X, Kim H, Kisugi T, Nomura T, Sekimoto H et al (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J et al (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol 52:626–638

    PubMed  CAS  Google Scholar 

  • Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li SL et al (2013) Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS (2011) Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem 19:7394–7400

    PubMed  CAS  Google Scholar 

  • Zwanenburg B, Pospisil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    PubMed  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements  

The authors would like to acknowledge networking support by the COST Action FA 1206 Strigolactones: Biological Roles and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinanit Koltai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koltai, H., Prandi, C. (2014). Strigolactones: Biosynthesis, Synthesis and Functions in Plant Growth and Stress Responses. In: Tran, LS., Pal, S. (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0491-4_9

Download citation

Publish with us

Policies and ethics