Skip to main content

Roles of Ethylene in Plant Growth and Responses to Stresses

  • Chapter
  • First Online:
Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications

Abstract

Ethylene regulates many aspects of plant growth and development and responses to multiple biotic and abiotic stresses. The regulatory mechanisms of ethylene have been extensively studied during the past two decades. Ethylene is synthesized via a simple linear pathway, in which ACC synthase and ACC oxidase function as key enzymes. Ethylene biosynthesis is tightly controlled in response to various internal and external signals. A linear signaling pathway has been established on the basis of characterization of triple response mutants in Arabidopsis. Ethylene signal is perceived by a family of membrane-bound receptors and is transmitted by CTR1 and EIN2 and is then amplified through EIN3 and ERF transcription cascades. Ethylene interacts with other phytohormones in most developmental process. Biotechnological manipulation of ethylene actions at the level of biosynthesis, perception, and signal transduction has been successfully achieved in a number of plant species, especially crops. This chapter summarizes the recent advances in ethylene biosynthesis and its regulation, ethylene signal transduction, regulatory roles of ethylene in plant development and abiotic stress responses, cross talk with other hormones, and biotechnological applications in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099

    PubMed  CAS  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 104:6484–6489

    PubMed Central  PubMed  CAS  Google Scholar 

  • Adams-Phillips L, Barry C, Kannanz P, Leclercq J, Bouzayen M, Giovannoni J (2004) Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol 54:387–404

    PubMed  CAS  Google Scholar 

  • Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101

    CAS  Google Scholar 

  • Alba R, Payton P, Fei ZJ, McQuinn R, Debbie P, Martin GB, Steven D, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    PubMed  CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100:2992–2997

    PubMed Central  PubMed  CAS  Google Scholar 

  • An FY, Zhao QO, Ji YS, Li WY, Jiang ZQ, Yu XC, Zhang C, Han Y, He WR, Liu YD, Zhang SQ, Ecker JR, Guo HW (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    PubMed Central  PubMed  CAS  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    CAS  Google Scholar 

  • Ayub R, Guis M, Amor MB, Gillot L, Roustan J-P, Latch A, Bouzayen M, Pech J-C (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    PubMed  CAS  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    PubMed  CAS  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28:94–107

    PubMed  CAS  Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci U S A 103:7923–7928

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535

    PubMed  CAS  Google Scholar 

  • Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    PubMed Central  PubMed  CAS  Google Scholar 

  • Benschop JJ, Jackson MB, Guhl K, Vreeburg RAM, Croker SJ, Peeters AJM, Voesenek LACJ (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756–768

    PubMed  CAS  Google Scholar 

  • Binder BM, Rodríguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 285:37263–37270

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bisson MMA, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889

    PubMed  CAS  Google Scholar 

  • Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    PubMed  CAS  Google Scholar 

  • Bleecker AB, Esch JJ, Hall AE, Rodríguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc Lond B 353:1405–1412

    CAS  Google Scholar 

  • Blume B, Grierson D (1997) Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12:731–746

    PubMed  CAS  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Fernandez R, Troadec C, Martin A, Morin H, Sari M-A, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838

    PubMed  CAS  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari M-A, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One 4:e6144

    PubMed Central  PubMed  Google Scholar 

  • Bouquin T, Lasserre E, Pradier J, Pech JC, Balagué C (1997) Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol Biol 35:1029–1035

    PubMed  CAS  Google Scholar 

  • Bovy AG, Angenet GC, Dons HJM, van Altvorst A-C (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308

    CAS  Google Scholar 

  • Caba JM, Poveda L, Gresshoff PM, Ligero F (1999) Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a supernodulating mutant. New Phytol 142:233–242

    CAS  Google Scholar 

  • Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chan PK, Biswas B, Gresshoff PM (2013) Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in Lotus japonicus. J Integr Plant Biol 55:395–408

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    PubMed  CAS  Google Scholar 

  • Chen J, Gallie DR (2010) Analysis of the functional conservation of ethylene receptors between maize and Arabidopsis. Plant Mol Biol 74:405–421

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    PubMed  CAS  Google Scholar 

  • Chen G, Alexander L, Grierson D (2004) Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J Exp Bot 55:1491–1497

    PubMed  CAS  Google Scholar 

  • Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    PubMed  CAS  Google Scholar 

  • Chen L, Zhang Z, Liang H, Liu H, Du L, Xu H, Xin Z (2008) Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot 59:4195–4204

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen T, Liu J, Lei G, Liu YF, Li ZG, Tao JJ, Hao YJ, Cao YR, Lin Q, Zhang WK, Ma B, Chen SY, Zhang JS (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50:1636–1650

    PubMed  CAS  Google Scholar 

  • Chen L, Dodd IC, Davies WJ, Wilkinson S (2013a) Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ 36:1850–1859

    PubMed  CAS  Google Scholar 

  • Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J (2013b) Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot 64:2523–2538

    PubMed  CAS  Google Scholar 

  • Cheng WH, Chiang MH, Hwang SG, Lin PC (2009) Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol 71:61–80

    PubMed Central  PubMed  CAS  Google Scholar 

  • Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ, Vierstra RD (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95:5401–5406

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, John R, Stow JR, Richard J, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    CAS  Google Scholar 

  • Dasharath Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285

    PubMed Central  PubMed  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    PubMed  CAS  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C (2010a) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 285:40706–40713

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dong N, Liu X, Lu Y, Du LP, Xu H, Liu H, Xin Z, Zhang Z (2010b) Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics 10:215–226

    PubMed  CAS  Google Scholar 

  • Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot 62:4875–4887

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dong W, Ai X, Xu F, Quan T, Liu S, Xia G (2012) Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511:38–45

    PubMed  CAS  Google Scholar 

  • Dorling SJ, McManus MT (2012) The fate of ACC in higher plants. Annu Plant Rev 44:83–115

    CAS  Google Scholar 

  • Duan X, Wang X, Fu Y, Tang C, Li X, Cheng Y, Feng H, Huang L, Kang Z (2013) TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Mol Plant Pathol 14:728–739

    PubMed  CAS  Google Scholar 

  • Dugardeyn J, Van Der Straeten D (2008) Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci 175:59–70

    CAS  Google Scholar 

  • Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujisawa M, Nakano T, Ito Y (2011) Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol 11:26

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujisawa M, Nakano T, Shima Y, Ito Y (2013) A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Ethylene—a key regulator of submergence responses in rice. Plant Sci 175:43–51

    CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2012) The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol 160:1795–1807

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gallie DR (2010) Regulated ethylene insensitivity through the inducible expression of the Arabidopsis etr1-1 mutant ethylene receptor in tomato. Plant Physiol 152:1928–1939

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    PubMed  CAS  Google Scholar 

  • Gallie DR, Geisler-Lee J, Chen J, Jolley B (2009) Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Mol Biol 69:195–211

    PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci U S A 95:7825–7829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gao ZY, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    PubMed  CAS  Google Scholar 

  • Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Ill RJK, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283:23801–23810

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61:857–871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide Y, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Good X, Kellogg JA, Wagoner W, Langoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26:781–790

    PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    CAS  Google Scholar 

  • Grefen C, Städele K, Ruzicka K, Obrdlik P, Harter K, Horák J (2007) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    PubMed  Google Scholar 

  • Guo HW, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    PubMed  CAS  Google Scholar 

  • Guptaa A, Palb RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J Plant Physiol 170:987–995

    Google Scholar 

  • Hall BP, Shakeel SN, Amir M, Ul Haq N, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    CAS  Google Scholar 

  • Han Y, Grierson D (2002) The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol Genet Genomics 267:629–635

    PubMed  CAS  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1025–1030

    Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    PubMed  CAS  Google Scholar 

  • Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808

    PubMed  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkers/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang YF, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    PubMed  CAS  Google Scholar 

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T (2000) Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci 159:173–181

    PubMed  CAS  Google Scholar 

  • Ito Y, Kitagawa M, Ihashi H, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55:212–223

    PubMed  CAS  Google Scholar 

  • Iwahori S, Lyons JM, Smith OE (1970) Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene, and growth regulators. Plant Physiol 46:412–415

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M (2010) ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ 33:805–815

    PubMed  CAS  Google Scholar 

  • Jiao XZ, Philosoph-Hadas S, Su LY, Yang SF (1986) The conversion of 1-(malonylamino)cyclopropane-1-carboxylic acid to 1-aminocyclopropane-1-carboxylic acid in plant tissues. Plant Physiol 81:637–641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jimenez JA, Rodriguez D, Calvo AP, Mortensen LC, Nicolas G, Nicolas C (2005) Expression of a transcription factor (FsERF1) involved in ethylene signaling during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant 125:373–380

    CAS  Google Scholar 

  • Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    PubMed  CAS  Google Scholar 

  • John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 7:483–490

    CAS  Google Scholar 

  • Ju C, Chang C (2012) Advances in ethylene signaling: protein complexes at the endoplasmic reticulum (ER) membrane. AoB Plants 2012:pls031. doi:10.1093/aobpla/pls031

    PubMed Central  PubMed  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signalling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109:19486–19491

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kamachi S, Sekimoto H, Kondo N, Sakai S (1997) Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol 38:1197–1206

    PubMed  CAS  Google Scholar 

  • Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ (2012) Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. Plant Physiol 160:488–497

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    PubMed  CAS  Google Scholar 

  • Kevany BM, Taylor MG, Klee HJ (2008) Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotechnol J 3:295–300

    Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    PubMed  CAS  Google Scholar 

  • Kionka C, Amrhein N (1984) The enzymatic malonylation of 1-aminocyclopropane-1-carboxylic acid in homogenates of mung bean hypocotyls. Planta 194:226–235

    Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishmore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    PubMed Central  PubMed  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55:821–831

    PubMed  CAS  Google Scholar 

  • Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F (2013) A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol 162:991–1005

    PubMed Central  PubMed  CAS  Google Scholar 

  • Le J, Vandenbussche F, De Cnodder T, Van Der Straeten D, Verbelen JP (2005) Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: responses to ethylene and auxin. J Plant Growth Regul 24:166–178

    CAS  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    PubMed  CAS  Google Scholar 

  • Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692

    PubMed  CAS  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    PubMed  CAS  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    PubMed  CAS  Google Scholar 

  • Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shao Y, Luo Y (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008

    PubMed  CAS  Google Scholar 

  • Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D (2008) A tomato HB-zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55:301–310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009a) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    PubMed  CAS  Google Scholar 

  • Lin Z, Ho CW, Grierson D (2009b) AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J Exp Bot 60:3697–3714

    PubMed Central  PubMed  CAS  Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    PubMed  CAS  Google Scholar 

  • Linkies A, Müller K, Morris K, Tureckova V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of ACC synthase by MPK6, a stress-responsive MAPK, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Regulation of ethylene biosynthesis through protein degradation. Plant Signal Behav 7:1438–1442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lyzenga WJ, Booth JK, Stone SL (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71:23–34

    PubMed  CAS  Google Scholar 

  • Ma B, Cui ML, Sun HJ, Takada K, Mori H, Kamada H, Ezura H (2006) Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol 141:587–597

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ma B, Chen SY, Zhang JS (2010) Ethylene signaling in rice. Chin Sci Bull 55:2204–2210

    CAS  Google Scholar 

  • Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS (2013) Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6:1830–1848

    Google Scholar 

  • Mao C, Wang S, Jia Q, Wu P (2006) OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component. Plant Mol Biol 61:141–152

    PubMed  CAS  Google Scholar 

  • Martin MN, Cohen JD, Saftner RA (1995) A new 1-aminocyclopropane-1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol 109:917–926

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matarasso N, Schuster S, Avni A (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell 17:1205–1216

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J (2012) Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol 415:768–779

    PubMed  CAS  Google Scholar 

  • McClellan CA, Chang C (2008) The role of protein turnover in ethylene biosynthesis and response. Plant Sci 175:24–31

    PubMed Central  PubMed  CAS  Google Scholar 

  • McMurchie EJ, Mc Glasson WB, Eak IL (1972) Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236

    PubMed  CAS  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    PubMed  CAS  Google Scholar 

  • Ogawara T, Higashi K, Kamada H, Ezura H (2003) Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana. J Plant Physiol 160:1335–1340

    PubMed  CAS  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    PubMed  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    PubMed Central  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li HJ, An FY, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5’–>3’ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci U S A 103:13286–13293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. J Exp Bot 59:2241–2251

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peng HP, Lin TY, Wang NN, Shih MC (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15–25

    PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 257:527–530

    Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish J-C, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    PubMed  CAS  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche A, Pech JC, Bouzayen M (2006) Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47:1195–1205

    PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    PubMed  CAS  Google Scholar 

  • Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157:216–228

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qu X, Hall BP, Gao Z, Shallar GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3

    PubMed Central  PubMed  Google Scholar 

  • Rasori A, Bertolasi B, Furini A, Bonghi C, Tonutti P, Ramina A (2003) Functional analysis of peach ACC oxidase promoters in transgenic tomato and in ripening peach fruit. Plant Sci 165:523–530

    CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci U S A 103:7917–7922

    PubMed Central  PubMed  CAS  Google Scholar 

  • Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56:423–431

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:96–998

    Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rzewuski G, Sauter M (2008) Ethylene biosynthesis and signaling in rice. Plant Sci 175:32–42

    CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298

    PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 95:5812–5817

    PubMed Central  PubMed  CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu C, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30:970–972

    CAS  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270:12526–12530

    PubMed  CAS  Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol 119:951–959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Scott RW, Yoo SD, Hunter DA, Gong D, Chen B, Leung S, McManus MT (2010) Regulation of 1-aminocyclopropane-1-carboxylate oxidase gene expression during leaf ontogeny in white clover. Plant Growth Regul 62:31–41

    CAS  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    PubMed Central  PubMed  CAS  Google Scholar 

  • Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7(4):e1001370

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Van Der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci U S A 94:2756–2761

    Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    PubMed Central  PubMed  CAS  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    PubMed  CAS  Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64:874–884

    PubMed Central  PubMed  CAS  Google Scholar 

  • Subbiah V, Reddy KJ (2010) Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci 35:451–458

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsang DL, Edmond C, Harrington JL, Nühse TS (2011) Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol 156:96–604

    Google Scholar 

  • Tsuchisaka A, Theologis A (2004a) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A (2004b) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci U S A 101:2275–2280

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH (2012) Targeted systems biology profiling of tomato fruit reveals coordination of the Yang Cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol 160:1498–1514

    PubMed Central  PubMed  Google Scholar 

  • Van der Ent S, Pieterse CMJ (2012) Ethylene: multi-tasker in plant–attacker interactions. Ann Plant Rev 44:343–377

    Google Scholar 

  • Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968

    Google Scholar 

  • Vandenbussche F, Van Der Straeten D (2007) One for all and all for one: cross-talk of multiple signals controlling the plant phenotype. J Plant Growth Regul 26:178–187

    CAS  Google Scholar 

  • Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606

    PubMed  CAS  Google Scholar 

  • Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol 194:895–909

    PubMed  CAS  Google Scholar 

  • Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    PubMed  CAS  Google Scholar 

  • Wang N, Shih M, Li N (2005) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    PubMed  CAS  Google Scholar 

  • Wang Q, Zhang W, Yin Z, Wen CK (2013a) Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. J Exp Bot 64:4863–4875

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ (2013b) Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. Mol Plant Pathol 14:453–469

    PubMed  CAS  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270:1807–1809

    PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleeker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor for Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447

    PubMed  CAS  Google Scholar 

  • Woeste K, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of ethylene responses as well as a rosette-lethal phenotype. Plant Cell 12:443–455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulations in rice. Plant Cell 21:1473–1494

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao Y, Chen J, Kuang J, Shan W, Xie H, Jiang Y, Lu W (2013) Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot 64:2499–2510

    PubMed  CAS  Google Scholar 

  • Xie C, Zhang ZG, Zhang JS, He XJ, Cao WH, He SJ, Chen SY (2002) Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco. Plant Cell Physiol 43:810–815

    PubMed  CAS  Google Scholar 

  • Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY (2003) Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant J 33:385–393

    PubMed  CAS  Google Scholar 

  • Xie F, Qiu L, Wen CK (2012) Possible modulation of Arabidopsis ETR1 N-terminal signaling by CTR1. Plant Signal Behav 7:1243–1245

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Li X, Han PL, Fan HQ (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    PubMed  CAS  Google Scholar 

  • Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–619

    PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Liu K, Wang P (2006) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57:149–160

    PubMed  CAS  Google Scholar 

  • Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, Li Z (2010) Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J Exp Bot 61:697–708

    PubMed  CAS  Google Scholar 

  • Yokotani N, Nakano R, Imanishi S, Nagata M, Inaba A, Kubo Y (2009) Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot 60:3433–3442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signalling network. Trends Plant Sci 14:270–279

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Young TE, Meeley RB, Gallie DR (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825

    PubMed  CAS  Google Scholar 

  • Yuan S, Dean JF (2010) Differential responses of the promoters from nearly identical paralogs of loblolly pine (Pinus taeda L.) ACC oxidase to biotic and abiotic stresses in transgenic Arabidopsis thaliana. Planta 232:873–886

    PubMed  CAS  Google Scholar 

  • Zadnikova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding Z, Schwarzerova K, Morita MT, Tasaka M, Hejatko J, Van Der Straeten D, Friml J, Benková E (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137:607–617

    PubMed  CAS  Google Scholar 

  • Zarembinski TI, Theologis A (1997) Expression characteristics of Os-ACS1 and Os-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol Biol 33:71–77

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhou C (2013) Signal transduction in leaf senescence. Plant Mol Biol 82:539–545

    PubMed  CAS  Google Scholar 

  • Zhang JS, Xie C, Shen YG, Chen SY (2001) A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102:815–824

    CAS  Google Scholar 

  • Zhang Z, Yao W, Dong N, Liang H, Liu H, Huang R (2007) A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot 58:2993–3003

    PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009a) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009b) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS (2011) NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant J 68:830–843

    PubMed  CAS  Google Scholar 

  • Zhang W, Zhou X, Wen CK (2012) Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J Exp Bot 63:4151–4164

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237:1443–1451

    PubMed  CAS  Google Scholar 

  • Zhao Q, Guo H (2011) Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant 4:626–634

    PubMed  CAS  Google Scholar 

  • Zheng Z, Guo Y, Novak O, Dai X, Zhao Y, Ljung K, Noel JP, Chory J (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9:244–246

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhong SL, Lin ZF, Grierson D (2008) Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot 59:965–972

    PubMed  CAS  Google Scholar 

  • Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250

    PubMed  CAS  Google Scholar 

  • Zhu CH, Gan LJ, Shen ZG, Xia K (2006a) Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 57:1299–1308

    PubMed  CAS  Google Scholar 

  • Zhu HL, Zhu BZ, Shao Y, Wang XG, Lin XJ, Xie YH, Li YC, Gao HY, Luo YB (2006b) Tomato fruit development and ripening are altered by the silencing of LeEIN2 gene. J Integr Plant Biol 48:1478–1485

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ma, B., Chen, H., Chen, SY., Zhang, JS. (2014). Roles of Ethylene in Plant Growth and Responses to Stresses. In: Tran, LS., Pal, S. (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0491-4_4

Download citation

Publish with us

Policies and ethics