Skip to main content

Plant Hormone Crosstalks Under Biotic Stresses

  • Chapter
  • First Online:

Abstract

Plants have developed defense signaling systems to protect themselves from invading pathogens. Plant hormones such as salicylic acid, jasmonates, and ethylene act as signals to trigger and mediate a diverse array of defense responses. Other hormones such as abscisic acid, auxin, gibberellic acids, cytokinins, and brassinosteroids, which were previously implicated in developmental and abiotic stress responses, also play important roles in defense signaling against pathogens. These hormone signaling pathways interconnect in an antagonistic or synergistic manner, providing plants with a vast regulatory potential to adapt rapidly to their biotic environment and to use their limited resources for growth and survival in a cost-efficient manner. On the other hand, pathogens have developed strategies to manipulate the signaling network and increase their virulence. This chapter reviews recent progress in research on the roles of hormone signaling pathways and their interactions in plant defense, mainly focusing on the salicylic acid signaling pathway and its interactions with other pathways. In addition to studies on Arabidopsis and other dicots, we also discuss some of the studies on rice, a monocot model plant, because such studies have provided some additional insights into the effects of signaling crosstalks on resistance to abiotic and biotic stresses. We also discuss some of the biotechnological and pharmaceutical strategies to manipulate defense hormone signaling to improve the disease tolerance of crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    CAS  Google Scholar 

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D et al (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308

    PubMed Central  PubMed  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    PubMed  CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, Ton J, Hutchison CE, Schaller GE et al (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:1–13

    Google Scholar 

  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F et al (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    PubMed Central  PubMed  CAS  Google Scholar 

  • Asselbergh B, Achuo AE, Hofte M, Van Gijsegem F (2008a) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    PubMed  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Hofte M (2008b) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    PubMed  CAS  Google Scholar 

  • Bailey T, Zhou X, Chen J, Yang Y (2009) Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang G, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, pp 185–190

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blanco F, Garreton V, Frey N, Dominguez C, Perez-Acle T, Van der Straeten D et al (2005) Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol 59:927–944

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Bonman JM, Sanchez LM, Mackill AO (1988) Effects of water deficit on rice blast. II. Disease-development in the field. J Plant Prot Trop 5:67–73

    Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C et al (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A 107:14502–14507

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bowles DJ (1997) The wound response of tomato plants: analysis of local and long-range signalling events. Essays Biochem 32:161–169

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J et al (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 104:20131–20136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H et al (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    PubMed  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–520

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    PubMed  CAS  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    PubMed  CAS  Google Scholar 

  • Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16:388–394

    PubMed  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    PubMed  CAS  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P et al (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443

    PubMed Central  PubMed  Google Scholar 

  • De Vleesschauwer D, Yang Y, Cruz CV, Hofte M (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    PubMed Central  PubMed  Google Scholar 

  • De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR et al (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    PubMed Central  PubMed  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC et al (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    PubMed Central  PubMed  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606

    PubMed Central  PubMed  CAS  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    PubMed  CAS  Google Scholar 

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D et al (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X et al (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    PubMed  CAS  Google Scholar 

  • Domingo C, Andres F, Tharreau D, Iglesias DJ, Talon M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22:201–210

    PubMed  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    PubMed  CAS  Google Scholar 

  • Dörffling K, Petersen W, Sprecher E, Urbasch I, Hanssen HP (1984) Abscisic acid in phytopathogenic fungi of the genera Botrytis, Ceratocystis, Fusarium, and Rhizoctonia. Z Naturforsch 39:683–684

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • Endah R, Beyene G, Kiggundu A, Van den Berg N, Schlüter U, Kunert K et al (2008) Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol Biochem 46:1007–1014

    PubMed  CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886

    PubMed  CAS  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    PubMed  CAS  Google Scholar 

  • Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151

    PubMed  CAS  Google Scholar 

  • Flors V, Ton J, van Doorn R, Jakab G, Garcia-Agustin P, Mauch-Mani B (2008) Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92

    PubMed  CAS  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009a) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R et al (2009b) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    PubMed  CAS  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG et al (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    CAS  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J et al (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N et al (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S et al (1993) Requirement of salicylic Acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CAS  Google Scholar 

  • Garg R, Tyagi AK, Jain M (2012) Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal Behav 7:951–956

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gill MA, Bonman JM (1988) Effects of water deficit on rice blast. I. Influence of water deficit on components of resistance. J Plant Prot Trop 5:61–66

    Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CM, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27: 599–609

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    PubMed  CAS  Google Scholar 

  • Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH et al (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    PubMed Central  PubMed  Google Scholar 

  • Grant MR, Jones JD (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    PubMed  CAS  Google Scholar 

  • Grosskinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T et al (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    PubMed Central  PubMed  CAS  Google Scholar 

  • Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K et al (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K et al (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant Microbe Interact 23:1000–1011

    PubMed  CAS  Google Scholar 

  • He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P et al (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360–2363

    PubMed  CAS  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11:33–42

    PubMed  CAS  Google Scholar 

  • Henfling J, Bostock R, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70:1074–1078

    CAS  Google Scholar 

  • Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142:1202–1215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iwai T, Seo S, Mitsuhara I, Ohashi Y (2007) Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol 48:915–924

    PubMed  CAS  Google Scholar 

  • Iwata M, Suzuki Y, Watanabe T, Mase S, Sekikawa Y (1980) Effect of probenazole on the activities related to the resistant reaction in rice plant. Ann Phytopathol Soc Jpn 46:297–306

    Google Scholar 

  • Jameson P (2000) Cytokinins and auxins in plant-pathogen interactions—an overview. Plant Growth Regul 32:369–380

    CAS  Google Scholar 

  • Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M et al (2009) Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact 22:820–829

    PubMed  CAS  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R et al (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    PubMed  CAS  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H et al (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant Microbe Interact 26:287–296

    PubMed  CAS  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Kahn RP, Libby JL (1958) The effect of environmental factors and plant ages on the infection of rice by the blast fungus, Pyricularia oryzae. Phytopathology 48:25–30

    Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    PubMed  CAS  Google Scholar 

  • Kettner J, Dörffling K (1987) Abscisic acid metabolism in Ceratocystis coerulescens. Physiol Plant 69:278–282

    CAS  Google Scholar 

  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH et al (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun 300:868–876

    PubMed  CAS  Google Scholar 

  • Ko KW, Okada K, Koga J, Jikumaru Y, Nojiri H, Yamane H (2010) Effects of cytokinin on production of diterpenoid phytoalexins in rice. J Pestic Sci 35:412–418

    CAS  Google Scholar 

  • Koda Y (1992) The role of jasmonic acid and related compounds in the regulation of plant development. In: Kwang WJ, Martin F (eds) International Review of Cytology, vol 135. Academic, New York, pp 155–199

    Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9

    CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  • Kurosawa E (1926) Experimental studies on the nature of the substance secreted by the “bakanae” fungus. Nat Hist Soc Formosa 16:213–227

    Google Scholar 

  • Lai XH, Marchetti MA, Petersen HD (1999) Comparative slow-blasting in rice grown under upland and flooded blast nursery culture. Plant Dis 93:681–684

    Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800

    PubMed  CAS  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H et al (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    PubMed  CAS  Google Scholar 

  • Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol 9:54

    PubMed Central  PubMed  Google Scholar 

  • Lee A, Cho K, Jang S, Rakwal R, Iwahashi H, Agrawal GK et al (2004) Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem Biophys Res Commun 318:734–738

    PubMed  CAS  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S et al (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    PubMed  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li R, Afsheen S, Xin Z, Han X, Lou Y (2013) OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant 147:340–351

    PubMed  CAS  Google Scholar 

  • Liu X, Li F, Tang J, Wang W, Zhang F, Wang G et al (2012) Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS One 7:e50089

    PubMed Central  PubMed  CAS  Google Scholar 

  • Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B, Sanchez-Rodriguez C et al (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509

    PubMed  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    PubMed  CAS  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic-acid and plant-disease resistance. Plant J 2:643–654

    CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    PubMed  CAS  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant Microbe Interact 20:1568–1580

    PubMed  CAS  Google Scholar 

  • Matsumoto K (1980) On the relationship between plant hormones and rice blast resistance. Ann Phytopathol Soc Jpn 46:307–314

    Google Scholar 

  • Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N et al (2013) The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J 73:302–313

    PubMed Central  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald KL and Cahill DM (1999) Evidence for a transmissible factor that causes rapid stomatal closure in soybean at sites adjacent to and remote from hypersensitive cell death induced by Phytophthora sojae. Physiol Mol Plant Pathol 55:197–203

    Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    PubMed  CAS  Google Scholar 

  • Métraux JP, Signer H, Wyss-Benz M, Gaudin J, Ryals J, Ward E et al (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    PubMed  Google Scholar 

  • Métraux J-P, Ahl-Goy P, Staub T, Speich J, Steinemann A, Ryals J et al (1991) Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 432–439

    Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Hofte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytol 196:901–913

    PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, Hause B, Hofte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant Microbe Interact 26:106–115

    PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y et al (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP et al (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    PubMed  CAS  Google Scholar 

  • Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    PubMed  Google Scholar 

  • Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    PubMed  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J et al (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    PubMed  CAS  Google Scholar 

  • Park HS, Ryu HY, Kim BH, Kim SY, Yoon IS, Nam KH (2011) A subset of OsSERK genes, including OsBAK1, affects normal growth and leaf development of rice. Mol Cells 32:561–569

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pasquer F, Isidore E, Zarn J, Keller B (2005) Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol Biol 57:693–707

    PubMed  CAS  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H et al (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    PubMed  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    PubMed  CAS  Google Scholar 

  • Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X et al (2011) The chloroplast-localized phospholipases D alpha4 and alpha5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol 157:1987–1999

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y et al (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L et al (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551

    PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S (2009) Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74

    PubMed Central  PubMed  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant Microbe Interact 21:1215–1231

    PubMed  CAS  Google Scholar 

  • Ribot C, Hirsch J, Balzergue S, Tharreau D, Notteghem JL, Lebrun MH et al (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165:114–124

    PubMed  CAS  Google Scholar 

  • Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S et al (2013) Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J 74:226–238

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011a) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y et al (2011b) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67:218–231

    PubMed  CAS  Google Scholar 

  • Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci U S A 91:10556–10560

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwessinger B and Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63:451–482

    Google Scholar 

  • Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155:502–514

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen X, Liu H, Yuan B, Li X, Xu C, Wang S (2011) OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ 34:179–191

    PubMed  CAS  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y et al (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495

    PubMed  CAS  Google Scholar 

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S et al (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M et al (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13:83–94

    PubMed  CAS  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W et al (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494

    PubMed  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiol 108:633–639

    PubMed Central  PubMed  CAS  Google Scholar 

  • Singh MP, Lee FN, Counce PA, Gibbons JH (2004) Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology 94:819–825

    PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ et al (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872

    PubMed Central  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D (2011) A successful bacterial coup d’etat: how Rhodococcus fascians redirects plant development. Annu Rev Phytopathol 49:69–86

    PubMed  CAS  Google Scholar 

  • Sugano S, Jiang C-J, Miyazawa S-I, Masumoto C, Yazawa K, Hayashi N et al (2010) Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Mol Biol 74:549–562

    PubMed  CAS  Google Scholar 

  • Swartzberg D, Kirshner B, Rav-David D, Elad Y, Granot D (2008) Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur J Plant Pathol 120:289–297

    CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C et al (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    PubMed  CAS  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208

    PubMed  CAS  Google Scholar 

  • Takatsuji H, Jiang C-J, Sugano S (2010) Salicylic acid signaling pathway in rice and the potential applications of its regulators. JARQ 44:217–223

    CAS  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N et al (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    PubMed  CAS  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H et al (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8:e24260

    PubMed Central  PubMed  Google Scholar 

  • Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631

    PubMed  CAS  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G et al (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    PubMed  CAS  Google Scholar 

  • Ton J, Mauch-Mani B (2004) ß-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    PubMed  CAS  Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B et al (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71:763–775

    PubMed  CAS  Google Scholar 

  • Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLoS Genet 5:e1000772

    PubMed Central  PubMed  Google Scholar 

  • Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S et al (2013) MAP kinases phosphorylate rice WRKY45. Plant Signal Behav 8:e24510

    PubMed Central  PubMed  Google Scholar 

  • Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T et al (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    PubMed  CAS  Google Scholar 

  • Uquillas C, Letelier I, Blanco F, Jordana X, Holuigue L (2004) NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol Plant Microbe Interact 17:34–42

    PubMed  CAS  Google Scholar 

  • van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    PubMed  Google Scholar 

  • van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711–8716

    PubMed Central  PubMed  Google Scholar 

  • Verberne MC, Hoekstra J, Bol JF, Linthorst HJ (2003) Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J 35:27–32

    PubMed  CAS  Google Scholar 

  • Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11:581–586

    PubMed  CAS  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    PubMed Central  PubMed  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    PubMed  CAS  Google Scholar 

  • Ward EW, Cahill DM, Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f.sp. glycinea. Plant Physiol 91:23–27

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46:143–160

    PubMed  CAS  Google Scholar 

  • Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17:1279–1291

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID et al (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    PubMed  CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen pv by suppressing salicylic acid-mediated defenses. PLoS One 8:e67413

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S et al (2012) Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol 53:2060–2072

    PubMed  CAS  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    PubMed  CAS  Google Scholar 

  • Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX et al (2008) Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537

    PubMed  CAS  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 109:E1192–E1200

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T et al (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Google Scholar 

  • Yazawa K, Jiang CJ, Kojima M, Sakakibara H, Takatsuji H (2012) Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol Mol Plant Pathol 78:1–7

    CAS  Google Scholar 

  • Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y et al (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS One 7:e36214

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida S, Nakashita H, Asami T, Yasuda M (2006) Agent for protecting rice from disease injury. Japan Patent 2006–117608

    Google Scholar 

  • Yoshioka K, Nakashita H, Klessig DF, Yamaguchi I (2001) Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J 25:149–157

    PubMed  CAS  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L et al (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324

    PubMed  CAS  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y et al (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464

    Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B et al (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    PubMed  CAS  Google Scholar 

  • Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takatsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takatsuji, H., Jiang, CJ. (2014). Plant Hormone Crosstalks Under Biotic Stresses. In: Tran, LS., Pal, S. (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0491-4_11

Download citation

Publish with us

Policies and ethics