Skip to main content

Phospholipase A2 Activity Exhibited by a Bacterial Virulence Protein That Enters and Operates Within a Variety of Host Cells

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6306 Accesses

Abstract

Phospholipase A2 (PLA2) is a pivotal enzyme in human health and disease. With approximately 30 isoforms exhibiting PLA2 activity expressed within or secreted by a variety of cell and tissue types, the functional significance of this enzyme is multifaceted. Mammalian PLA2s are known contributors during host–pathogen interactions during infectious disease processes. Interestingly, several bacterial pathogens themselves express PLA2 enzymes that exhibit a patatin domain and have sequence similarity to cytosolic and calcium-independent PLA2s. The most prominent example termed ExoU is expressed by Pseudomonas aeruginosa and operates exclusively in eukaryotic host cells. ExoU serves as a potent cytotoxin expressed by P. aeruginosa clinical isolates most associated with severe acute pneumonia and microbial keratitis. The PLA2 activity of ExoU is responsible for this potent toxicity and is also capable of mediating host production of eicosanoids and stimulating cytokine and chemokine production in a variety of cell types. Efforts are underway to better understand and potentially neutralize these potent microbial PLA2 virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hurley BP, McCormick BA (2008) Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 76:2259–2272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Murakami M, Lambeau G (2013) Emerging roles of secreted phospholipase A2 enzymes: an update. Biochimie 95:43–50

    Article  CAS  PubMed  Google Scholar 

  4. Hurley B, Siccardi D, Mrsny RJ, McCormick BA (2004) Polymorphonuclear cell transmigration induced by Pseudomonas aeruginosa requires the eicosanoid hepoxilin A3. J Immunol 173:5712–5720

    CAS  PubMed  Google Scholar 

  5. Hurley BP, Williams NL, McCormick BA (2006) Involvement of phospholipase A2 in Pseudomonas aeruginosa-mediated PMN transepithelial migration. Am J Physiol Lung Cell Mol Physiol 290:L703–L709

    Article  CAS  PubMed  Google Scholar 

  6. Kandasamy P, Zarini S, Chan ED et al (2011) Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J Biol Chem 286:7841–7853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kirschnek S, Gulbins E (2006) Phospholipase A2 functions in Pseudomonas aeruginosa-induced apoptosis. Infect Immun 74:850–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Engel J, Balachandran P (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61–66

    Article  CAS  PubMed  Google Scholar 

  9. Sato H, Frank DW (2004) ExoU is a potent intracellular phospholipase. Mol Microbiol 53:1279–1290

    Article  CAS  PubMed  Google Scholar 

  10. Sitkiewicz I, Stockbauer KE, Musser JM (2007) Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15:63–69

    Article  CAS  PubMed  Google Scholar 

  11. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tam C, Lewis SE, Li WY et al (2007) Mutation of the phospholipase catalytic domain of the Pseudomonas aeruginosa cytotoxin ExoU abolishes colonization promoting activity and reduces corneal disease severity. Exp Eye Res 85:799–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Siegel RE (2008) Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care 53:471–479

    PubMed  Google Scholar 

  14. Ramirez JC, Fleiszig SM, Sullivan AB et al (2012) Traversal of multilayered corneal epithelia by cytotoxic Pseudomonas aeruginosa requires the phospholipase domain of exoU. Invest Ophthalmol Vis Sci 53:448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Frank DW (2012) Research topic on Pseudomonas aeruginosa, biology, genetics, and host-pathogen interactions. Front Microbiol 3:20

    PubMed Central  PubMed  Google Scholar 

  16. Goodman AL, Lory S (2004) Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. Curr Opin Microbiol 7:39–44

    Article  CAS  PubMed  Google Scholar 

  17. Feldman M, Bryan R, Rajan S et al (1998) Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43–51

    CAS  PubMed Central  PubMed  Google Scholar 

  18. DiMango E, Zar HJ, Bryan R, Prince A (1995) Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 96:2204–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Prince A (2006) Flagellar activation of epithelial signaling. Am J Respir Cell Mol Biol 34:548–551

    Article  CAS  PubMed  Google Scholar 

  20. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa—a review. Gene 192:99–108

    Article  CAS  PubMed  Google Scholar 

  21. Whitchurch CB, Alm RA, Mattick JS (1996) The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93:9839–9843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lizewski SE, Lundberg DS, Schurr MJ (2002) The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70:6083–6093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Garcia-Medina R, Dunne WM, Singh PK, Brody SL (2005) Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect Immun 73:8298–8305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Finck-Barbancon V, Goranson J, Zhu L et al (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557

    Article  CAS  PubMed  Google Scholar 

  25. Fleiszig SM, Wiener-Kronish JP, Miyazaki H et al (1997) Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65:579–586

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hauser AR, Kang PJ, Engel JN (1998) PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27:807–818

    Article  CAS  PubMed  Google Scholar 

  27. Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB (2000) Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68:3998–4004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kurahashi K, Kajikawa O, Sawa T et al (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104:743–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Finck-Barbancon V, Frank DW (2001) Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol 183:4330–4344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rabin SD, Veesenmeyer JL, Bieging KT, Hauser AR (2006) A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect Immun 74:2552–2561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Finck-Barbancon V, Yahr TL, Frank DW (1998) Identification and characterization of SpcU, a chaperone required for efficient secretion of the ExoU cytotoxin. J Bacteriol 180:6224–6231

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Diaz MH, Hauser AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78:1447–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67:5530–5537

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pankhaniya RR, Tamura M, Allmond LR et al (2004) Pseudomonas aeruginosa causes acute lung injury via the catalytic activity of the patatin-like phospholipase domain of ExoU. Crit Care Med 32:2293–2299

    CAS  PubMed  Google Scholar 

  35. Rabin SD, Hauser AR (2003) Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71:4144–4150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Saliba AM, Nascimento DO, Silva MC et al (2005) Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cell Microbiol 7:1811–1822

    Article  CAS  PubMed  Google Scholar 

  37. Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 99:3159–3164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McMorran B, Town L, Costelloe E et al (2003) Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection. Infect Immun 71:6035–6044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shaver CM, Hauser AR (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Phillips RM, Six DA, Dennis EA, Ghosh P (2003) In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem 278:41326–41332

    Article  CAS  PubMed  Google Scholar 

  41. Sato H, Frank DW, Hillard CJ et al (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22:2959–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tamura M, Ajayi T, Allmond LR et al (2004) Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Commun 316:323–331

    Article  CAS  PubMed  Google Scholar 

  43. Sato H, Feix JB, Frank DW (2006) Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry 45:10368–10375

    Article  CAS  PubMed  Google Scholar 

  44. Anderson DM, Feix JB, Monroe AL et al (2013) Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase. J Biol Chem 288:26741–26752

    Article  CAS  PubMed  Google Scholar 

  45. Anderson DM, Schmalzer KM, Sato H et al (2011) Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol 82:1454–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Schmalzer KM, Benson MA, Frank DW (2010) Activation of ExoU phospholipase activity requires specific C-terminal regions. J Bacteriol 192:1801–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Veesenmeyer JL, Howell H, Halavaty AS et al (2010) Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity. Infect Immun 78:3346–3357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tyson GH, Hauser AR (2013) Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun 81:2873–2881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Six DA, Dennis EA (2003) Essential Ca2+-independent role of the group IVA cytosolic phospholipase A2 C2 domain for interfacial activity. J Biol Chem 278:23842–23850

    Article  CAS  PubMed  Google Scholar 

  50. Stirling FR, Cuzick A, Kelly SM, Oxley D, Evans TJ (2006) Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol 8:1294–1309

    Article  CAS  PubMed  Google Scholar 

  51. Saliba AM, de Assis MC, Nishi R et al (2006) Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect 8:450–459

    Article  CAS  PubMed  Google Scholar 

  52. Plotkowski MC, Brandão BA, de Assis MC et al (2008) Lipid body mobilization in the ExoU-induced release of inflammatory mediators by airway epithelial cells. Microb Pathog 45:30–37

    Article  CAS  PubMed  Google Scholar 

  53. Lins RX, de Assis MC, Mallet de Lima CD et al (2010) ExoU modulates soluble and membrane-bound ICAM-1 in Pseudomonas aeruginosa-infected endothelial cells. Microbes Infect 12:154–161

    Article  CAS  PubMed  Google Scholar 

  54. Cuzick A, Stirling FR, Lindsay SL, Evans TJ (2006) The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect Immun 74:4104–4113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sutterwala FS, Mijares LA, Li L et al (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Housley NA, Winkler HH, Audia JP (2011) The Rickettsia prowazekii ExoU homologue possesses phospholipase A1 (PLA1), PLA2, and lyso-PLA2 activities and can function in the absence of any eukaryotic cofactors in vitro. J Bacteriol 193:4634–4642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. VanRheenen SM, Luo ZQ, O’Connor T, Isberg RR (2006) Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 74:3597–3606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ et al (2013) Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol 15:1783–1795

    CAS  PubMed  Google Scholar 

  59. Rahman MS, Gillespie JJ, Kaur SJ et al (2013) Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells. PLoS Pathog 9:e1003399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan P. Hurley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurley, B.P. (2014). Phospholipase A2 Activity Exhibited by a Bacterial Virulence Protein That Enters and Operates Within a Variety of Host Cells. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_8

Download citation

Publish with us

Policies and ethics