Skip to main content

Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Abstract

Macrophages are known to produce significant amount of lipoprotein-associated phospholipase A2 (Lp-PLA2). In human plasma Lp-PLA2 circulates in association with low- and high-density lipoproteins (LDL and HDL), where LDL-associated Lp-PLA2 was found to be associated with atherosclerosis lesions. Studies have also suggested that LDL and the modified forms of LDL such as oxidized LDL (oxLDL) and glycated LDL (gLDL), and also apolipoprotein E (apoE) isoforms, are also found to be associated with Lp-PLA2 for initiation and progression of vascular lesions. Additionally, Chlamydia pneumoniae infection can increase Lp-PLA2 activity in the macrophages of atherosclerotic plaque. In adolescents, Lp-PLA2 changes occur with obesity and it shows important association with markers of cardiovascular disorder. Lp-PLA2 levels can be lowered by two main pharmacologic interventions—indirectly, by lowering LDL, or directly, by lowering Lp-PLA2 activity. Notably, darapladib (a product of GlaxoSmithKline) is now considered as an important therapeutic agent to inhibit Lp-PLA2 activity. However, some studies are still in progress to determine its pharmacokinetics and to prove it as a safe drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakraborti S (2003) Phospholipase A2 isoforms: a perspective. Cell Signal 15:637–665

    CAS  PubMed  Google Scholar 

  2. Chakraborti S, Michael JR, Chakraborti T (2004) Role of an aprotinin-sensitive protease in protein kinase Calpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium. Cell Signal 16:751–762

    CAS  PubMed  Google Scholar 

  3. Chakraborti T, Das S, Chakraborti S (2005) Proteolytic activation of protein kinase C α by peroxynitrite in stimulating cytosolic phospholipase A2 in pulmonary endothelium: involvement of a pertussis toxin sensitive protein. Biochemistry 44:5246–5257

    CAS  PubMed  Google Scholar 

  4. Tjoelker LW, Stafforini DM (2000) Platelet-activating factor acetylhydrolases in health and disease. Biochim Biophys Acta 1488:102–123

    CAS  PubMed  Google Scholar 

  5. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    CAS  PubMed  Google Scholar 

  6. Sudhir K (2006) Lipoprotein-associated phospholipase A2, vascular inflammation and cardiovascular risk prediction. Vasc Health Risk Manag 2:153–156

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Burchardt P, Zurawski J, Zuchowski B et al (2013) Low-density lipoprotein, its susceptibility to oxidation and the role of lipoprotein-associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation. Arch Med Sci 9:151–158

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Ferguson JF, Hinkle CC, Mehta NN et al (2012) Translational studies of lipoprotein-associated phospholipase A2 in inflammation and atherosclerosis. J Am Coll Cardiol 59:764–772

    CAS  PubMed Central  PubMed  Google Scholar 

  9. McCall MR, La Belle M, Forte TM et al (1999) Dissociable and nondissociable forms of platelet-activating factor acetylhydrolase in human plasma LDL: implications for LDL oxidative susceptibility. Biochim Biophys Acta 1437:23–36

    CAS  PubMed  Google Scholar 

  10. Stafforini DM, McIntyre TM, Carter ME, Prescott SM (1987) Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem 262:4215–4222

    CAS  PubMed  Google Scholar 

  11. Oei HH, van der Meer IM, Hofman A et al (2005) Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation 111:570–575

    CAS  PubMed  Google Scholar 

  12. Vasan RS, Sullivan LM, Roubenoff R et al (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107:1486–1491

    CAS  PubMed  Google Scholar 

  13. Zalewski A, Macphee C (2005) Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology and possible therapeutic target. Arterioscler Thromb Vasc Biol 25:923–931

    CAS  PubMed  Google Scholar 

  14. Ballantyne CM, Hoogeveen RC, Bang H et al (2004) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109:837–842

    CAS  PubMed  Google Scholar 

  15. Koenig W, Khuseyinova N, Löwel H et al (2004) Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation 110:1903–1908

    CAS  PubMed  Google Scholar 

  16. Packard CJ, O’Reilly DS, Caslake MJ et al (2000) Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 343:1148–1155

    CAS  PubMed  Google Scholar 

  17. O’Donoghue M, Morrow DA, Sabatine MS et al (2006) Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) trial. Circulation 113:1745–1752

    PubMed  Google Scholar 

  18. Maier W, Altwegg LA, Corti R et al (2005) Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation 111:1355–1361

    CAS  PubMed  Google Scholar 

  19. Tsimikas S, Tsironis LD, Tselepis AD (2007) New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler Thromb Vasc Biol 27:2094–2099

    CAS  PubMed  Google Scholar 

  20. Caslake MJ, Packard CJ (2003) Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol 14:347–352

    CAS  PubMed  Google Scholar 

  21. Arakawa H, Qian JY, Baatar D et al (2005) Local expression of platelet-activating factor-acetylhydrolase reduces accumulation of oxidized lipoproteins and inhibits inflammation, shear stress-induced thrombosis, and neointima formation in balloon-injured carotid arteries in nonhyperlipidemic rabbits. Circulation 111:3302–3309

    CAS  PubMed  Google Scholar 

  22. Chakraborti T, Mandal A, Mandal M et al (2000) Complement activation in heart diseases. Role of oxidants. Cell Signal 12:607–617

    CAS  PubMed  Google Scholar 

  23. Zalewski A, Nelson JJ, Hegg L, Macphee C (2006) Lp-PLA2: a new kid on the block. Clin Chem 52:1645–1650

    CAS  PubMed  Google Scholar 

  24. Stafforini DM, Sheller JR, Blackwell TS et al (2006) Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J Biol Chem 281:4616–4623

    CAS  PubMed  Google Scholar 

  25. Kim JY, Hyun YJ, Jang Y et al (2008) Lipoprotein-associated phospholipase A2 activity is associated with coronary artery disease and markers of oxidative stress: a case-control study. Am J Clin Nutr 88:630–637

    CAS  PubMed  Google Scholar 

  26. Tselepis AD, Chapman JM (2002) Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl 3:57–68

    CAS  PubMed  Google Scholar 

  27. Tellis CC, Tselepis AD (2009) The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta 1791:327–338

    CAS  PubMed  Google Scholar 

  28. Stafforini DM (2009) Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther 23:73–83

    CAS  PubMed  Google Scholar 

  29. Blencowe C, Hermetter A, Kostner GM, Deigner HP (1995) Enhanced association of platelet-activating factor acetylhydrolase with lipoprotein (a) in comparison with low density lipoprotein. J Biol Chem 270:31151–31157

    CAS  PubMed  Google Scholar 

  30. Stafforini DM, Tjoelker LW, McCormick SP et al (1999) Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. J Biol Chem 274:7018–7024

    CAS  PubMed  Google Scholar 

  31. Gazi I, Lourida ES, Filippatos T et al (2005) Lipoprotein-associated phospholipase A2 activity is a marker of small, dense LDL particles in human plasma. Clin Chem 51:2264–2273

    CAS  PubMed  Google Scholar 

  32. Carpentera KLH, Dennisa IF, Challisa IR et al (2001) Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing ejects of oxidised LDL on human monocyte-macrophages. FEBS Lett 505:357–363

    Google Scholar 

  33. Navab M, Berliner JA, Subbanagounder G, Hama S et al (2001) HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 21:481–488

    CAS  PubMed  Google Scholar 

  34. Lavi S, Herrmann J, Lavi R et al (2008) Role of lipoprotein-associated phospholipase A2 in atherosclerosis. Curr Atheroscler Rep 10:230–235

    CAS  PubMed  Google Scholar 

  35. Gungor Z, Anuurad E, Enkhmaa B et al (2012) Apo E4 and lipoprotein-associated phospholipase A2 synergistically increase cardiovascular risk. Atherosclerosis 223:230–234

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537

    CAS  PubMed  Google Scholar 

  37. Eichner JE, Dunn ST, Perveen G et al (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155:487–495

    PubMed  Google Scholar 

  38. Gerdes LU, Gerdes C, Kervinen K et al (2000) The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation 101:1366–1371

    CAS  PubMed  Google Scholar 

  39. Howard BV, Gidding SS, Liu K (1998) Association of apolipoprotein E phenotype with plasma lipoproteins in African-American and white young adults. The CARDIA Study. Coronary Artery Risk Development in Young Adults. Am J Epidemiol 148:859–868

    CAS  PubMed  Google Scholar 

  40. Anuurad E, Rubin J, Lu G et al (2006) Protective effect of apolipoprotein E2 on coronary artery disease in African Americans is mediated through lipoprotein cholesterol. J Lipid Res 47:2475–2481

    CAS  PubMed  Google Scholar 

  41. Epps KC, Wilensky RL (2011) Lp-PLA2—a novel risk factor for high-risk coronary and carotid artery disease. J Intern Med 269:94–106

    CAS  PubMed  Google Scholar 

  42. Murphy AJ, Akhtari M, Tolani S et al (2011) ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121:4138–4149

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Enkhmaa B, Anuurad E, Zhang W et al (2010) Association of Lp-PLA(2) activity with allele-specific Lp(a) levels in a bi-ethnic population. Atherosclerosis 211:526–530

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    CAS  PubMed  Google Scholar 

  45. Kolodgie FD, Burke AP, Skorija KS et al (2006) Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 26:2523–2529

    CAS  PubMed  Google Scholar 

  46. Gerber Y, McConnell JP, Jaffe AS et al (2006) Lipoprotein-associated phospholipase A2 and prognosis after myocardial infarction in the community. Arterioscler Thromb Vasc Biol 26:2517–2522

    CAS  PubMed  Google Scholar 

  47. Rosenson RS (2008) Fenofibrate reduces lipoprotein associated phospholipase A2 mass and oxidative lipids in hypertriglyceridemic subjects with the metabolic syndrome. Am Heart J 155:499

    PubMed  Google Scholar 

  48. Macphee CH, Nelson JJ, Zalewski A (2005) Lipoprotein-associated phospholipase A2 as a target of therapy. Curr Opin Lipidol 16:442–446

    CAS  PubMed  Google Scholar 

  49. Aprahamian T, Rifkin I, Bonegio R et al (2004) Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J Exp Med 199:1121–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Lavi S, Lavi R, McConnell JP et al (2007) Lipoprotein-associated phospholipase A2: review of its role as a marker and a potential participant in coronary endothelial dysfunction. Mol Diagn Ther 11:219–226

    CAS  PubMed  Google Scholar 

  51. El-Saed A, Sekikawa A, Zaky RW et al (2007) Association of lipoprotein-associated phospholipase A2 with coronary calcification among American and Japanese men. J Epidemiol 17:179–185

    PubMed Central  PubMed  Google Scholar 

  52. Kruse S, Mao XQ, Heinzmann A et al (2000) The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am J Hum Genet 66:1522–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Blake GJ, Dada N, Fox JC et al (2001) A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 38:1302–1306

    CAS  PubMed  Google Scholar 

  54. Worth RM, Kato H, Rhoads GG et al (1975) Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: mortality. Am J Epidemiol 102:481–490

    CAS  PubMed  Google Scholar 

  55. Liu YS, Hu XB, Li HZ et al (2011) Association of lipoprotein-associated phospholipase A2 with characteristics of vulnerable coronary atherosclerotic plaques. Yonsei Med J 52:914–922

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Rosenson RS (2010) Lp-PLA2 and risk of atherosclerotic vascular disease. Lancet 375:1498–1500

    PubMed  Google Scholar 

  57. Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16:267–272

    PubMed  Google Scholar 

  58. Yang EH, McConnell JP, Lennon RJ et al (2006) Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 26:106–111

    CAS  PubMed  Google Scholar 

  59. Kougias P, Chai H, Lin PH et al (2006) Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis. Med Sci Monit 12:5–16

    Google Scholar 

  60. Liu SY, Lu X, Choy S et al (1994) Alteration of lysophosphatidylcholine content in low density lipoprotein after oxidative modification: relationship to endothelium dependent relaxation. Cardiovasc Res 28:1476–1481

    CAS  PubMed  Google Scholar 

  61. Ouriel K (2001) Peripheral arterial disease. Lancet 358:1257–1264

    CAS  PubMed  Google Scholar 

  62. Herrmann J, Mannheim D, Wohlert C et al (2009) Expression of lipoprotein-associated phospholipase A2 in carotid artery plaques predicts long-term cardiac outcome. Eur Heart J 30:2930–2938

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Quinn MT, Parthasarathy S, Steinberg D (1998) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 85:2805–2809

    Google Scholar 

  64. Häkkinen T, Luoma JS, Hiltunen MO et al (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19:2909–2917

    PubMed  Google Scholar 

  65. Chai YC, Howe PH, DiCorleto PE, Chisolm GM (1996) Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cells. Evidence for release of fibroblast growth factor-2. J Biol Chem 271:17791–17797

    CAS  PubMed  Google Scholar 

  66. Takahashi M, Okazaki H, Ogata Y et al (2002) Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis 161:387–394

    CAS  PubMed  Google Scholar 

  67. Inoue N, Takeshita S, Gao D et al (2001) Lysophosphatidylcholine increases the secretion of matrix metalloproteinase 2 through the activation of NADH/NADPH oxidase in cultured aortic endothelial cells. Atherosclerosis 155:45–52

    CAS  PubMed  Google Scholar 

  68. Goessens BM, Visseren FL, Kappelle LJ et al (2007) Asymptomatic carotid artery stenosis and the risk of new vascular events in patients with manifest arterial disease: the SMART study. Stroke 38:1470–1475

    PubMed  Google Scholar 

  69. Jiang Z, Fehrenbach ML, Ravaioli G et al (2012) The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in Aspergillus fumigatus sensitized mice. Respir Res 13:100

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Miwa M, Miyake T, Yamanaka T et al (1998) Characterization of serum platelet-activating factor (PAF) acetylhydrolase. Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children. J Clin Invest 82:1983–1991

    Google Scholar 

  71. Vadas P, Gold M, Perelman B et al (2008) Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 358:28–35

    CAS  PubMed  Google Scholar 

  72. Satoh K (2008) Plasma platelet-activating factor acetylhydrolase (PAF-AH) deficiency as a risk factor for stroke. Brain Nerve 60:1319–1324

    CAS  PubMed  Google Scholar 

  73. Stafforini DM, Numao T, Tsodikov A et al (1999) Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J Clin Invest 103:989–997

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Gomes RN, Bozza FA, Amâncio RT et al (2006) Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis. Shock 26:41–49

    CAS  PubMed  Google Scholar 

  75. Satoh N, Asano K, Naoki K et al (1999) Plasma platelet-activating factor acetylhydrolase deficiency in Japanese patients with asthma. Am J Respir Crit Care Med 159:974–979

    CAS  PubMed  Google Scholar 

  76. Naoki K, Asano K, Satoh N et al (2004) PAF responsiveness in Japanese subjects with plasma PAF acetylhydrolase deficiency. Biochem Biophys Res Commun 317:205–210

    CAS  PubMed  Google Scholar 

  77. Opal S, Laterre PF, Abraham E et al (2004) Controlled Mortality Trial of Platelet-Activating Factor Acetylhydrolase in Severe Sepsis Investigators. Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341

    CAS  PubMed  Google Scholar 

  78. Grayston JT (2000) Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 181:S402–S410

    CAS  PubMed  Google Scholar 

  79. Sessa R, Nicoletti M, Di Pietro M et al (2009) Chlamydia pneumoniae and atherosclerosis: current state and future prospectives. Int J Immunopathol Pharmacol 22:9–14

    CAS  PubMed  Google Scholar 

  80. Laitinen K, Laurila A, Pyhala L et al (1997) Chlamydia pneumonia infection induces inflammatory changes in the aortas of rabbits. Infect Immun 65:4832–4835

    CAS  PubMed Central  PubMed  Google Scholar 

  81. de Kruif MD, van Gorp EC, Keller TT et al (2005) Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research. Cardiovasc Res 65:317–327

    PubMed  Google Scholar 

  82. Atik B, Johnston SC, Dean D (2010) Association of carotid plaque Lp-PLA2 with macrophages and Chlamydia pneumoniae infection among patients at risk for stroke. PLoS One 5:e11026

    PubMed Central  PubMed  Google Scholar 

  83. Johnston SC, Messina LM, Browner WS et al (2001) C-reactive protein levels and viable Chlamydia pneumoniae in carotid artery atherosclerosis. Stroke 32:2748–2752

    CAS  PubMed  Google Scholar 

  84. Jitsuiki K, Yamane K, Nakajima M et al (2006) Association of Chlamydia pneumoniae infection and carotid intima-media wall thickness in Japanese Americans. Circ J 70:815–819

    PubMed  Google Scholar 

  85. Kalayoglu MV, Hoerneman B, LaVerda D et al (1999) Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis 180:780–790

    CAS  PubMed  Google Scholar 

  86. Paik JK, Kim JY, Kim OY et al (2012) Circulating and PBMC Lp-PLA2 associate differently with oxidative stress and subclinical inflammation in nonobese women (menopausal status). PLoS One 7:e29675

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Jenny NS, Solomon C, Cushman M et al (2010) Lipoprotein-associated phospholipase A2 (Lp-PLA2) and risk of cardiovascular disease in older adults: results from the Cardiovascular Health Study. Atherosclerosis 209:528–532

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Barzilay JI, Spiekerman CF, Kuller LH et al (2001) Prevalence of clinical and isolated subclinical cardiovascular disease in older adults with glucose disorders: the Cardiovascular Health Study. Diabetes Care 24:1233–1239

    CAS  PubMed  Google Scholar 

  89. Kuller LH, Shemanski L, Psaty BM et al (1995) Subclinical disease as an independent risk factor for cardiovascular disease. Circulation 92:720–726

    CAS  PubMed  Google Scholar 

  90. Nelson TL, Kamineni A, Psaty B et al (2011) Lipoprotein-associated phospholipase A2 and future risk of subclinical disease and cardiovascular events in individuals with type 2 diabetes: the Cardiovascular Health Study. Diabetologia 54:329–333

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Pollin TI, Isakova T, Jablonski KA et al (2012) Genetic modulation of lipid profiles following lifestyle modification or metformin treatment: the Diabetes Prevention Program. PLoS Genet 8:e1002895

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Younis NN, Soran H, Sharma R et al (2010) Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and non-statin-treated type 2 diabetes. Diab Vasc Dis Res 7:289–295

    PubMed  Google Scholar 

  93. Sanchez-Quesada JL, Vinagre I, De Juan-Franco E et al (2013) Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovasc Diabetol 12:112

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kontush A, Chapman MJ (2010) Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 21:312–318

    CAS  PubMed  Google Scholar 

  95. Mackness MI, Durrington PN, Mackness B (2004) The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am J Cardiovasc Drugs 4:211–217

    CAS  PubMed  Google Scholar 

  96. Kontush A, Chantepie S, Chapman MJ (2003) Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 23:1881–1888

    CAS  PubMed  Google Scholar 

  97. Sanchez-Quesada JL, Vinagre I, de Juan-Franco E et al (2012) Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution. Am J Cardiol 110:67–71

    CAS  PubMed  Google Scholar 

  98. Krolewski AS, Kosinski EJ, Warram JH et al (1987) Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol 59:750–755

    CAS  PubMed  Google Scholar 

  99. Schram MT, Chaturvedi N, Schalkwijk CG et al (2005) EURODIAB Prospective Complications Study Group. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes–the EURODIAB Prospective Complications Study. Diabetologia 48:370–378

    CAS  PubMed  Google Scholar 

  100. Kardys I, Oei HH, Hofman A et al (2007) Lipoprotein-associated phospholipase A2 and coronary calcification. The Rotterdam Coronary Calcification Study. Atherosclerosis 191:377–383

    CAS  PubMed  Google Scholar 

  101. Schurgin S, Rich S, Mazzone T (2001) Increased prevalence of significant coronary artery calcification in patients with diabetes. Diabetes Care 24:335–338

    CAS  PubMed  Google Scholar 

  102. Kinney GL, Snell-Bergeon JK, Maahs DM et al (2011) Lipoprotein-associated phospholipase A2 activity predicts progression of subclinical coronary atherosclerosis. Diabetes Technol Ther 13:381–387

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Miller RG, Costacou T, Orchard TJ (2010) Lipoprotein-associated phospholipase A2, C-reactive protein, and coronary artery disease in individuals with type1 diabetes and macroalbuminuria. Diab Vasc Dis Res 7:47–55

    PubMed Central  PubMed  Google Scholar 

  104. Pambianco G, Costacou T, Ellis D et al (2006) The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55:1463–1469

    CAS  PubMed  Google Scholar 

  105. Peralta CA, Katz R, Shlipak M et al (2011) Kidney function decline in the elderly: impact of lipoprotein associated phospholipase A2. Am J Nephrol 34:512–518

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Peralta CA, Jacobs DR Jr, Katz R et al (2012) Association of ulse pressure, arterial elasticity, and endothelial function with kidney function decline among adults with estimated GFR >60 mL/min/1.73 m(2): the Multi-thnic Study of Atherosclerosis (MESA). Am J Kidney Dis 59:41–49

    PubMed Central  PubMed  Google Scholar 

  107. Persson M, Nilsson JA, Nelson JJ et al (2007) The epidemiology of Lp-PLA2: distribution and correlation with cardiovascular risk factors in a population-based cohort. Atherosclerosis 190:388–396

    CAS  PubMed  Google Scholar 

  108. Miyaura S, Maki N, Byrd W, Johnston JM (1991) The hormonal regulation of platelet-activating factor acetylhydrolase activity in plasma. Lipids 26:1015–1020

    CAS  PubMed  Google Scholar 

  109. Hatoum IJ, Nelson JJ, Cook NR et al (2010) Dietary, lifestyle, and clinical predictors of lipoprotein-associated phospholipase A2 activity in individuals without coronary artery disease. Am J Clin Nutr 91:786–793

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Celik S, Tangi F, Kilicaslan E et al (2013) Increased acylation stimulating protein levels in young obese males is correlated with systemic markers of oxidative stress. Obesity (Silver Spring) 21:1613–1617

    CAS  Google Scholar 

  111. Saougos VG, Tambaki AP, Kalogirou M et al (2007) Differential effect of hypolipidemic drugs on lipoprotein-associated phospholipase A2. Arterioscler Thromb Vasc Biol 27:2236–2243

    CAS  PubMed  Google Scholar 

  112. Wilensky RL, Shi Y, Mohler ER III et al (2008) Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat Med 14:1059–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wilensky RL, Shi Y, Zalewski A et al (2007) Darapladib, a selective inhibitor of Lp-PLA2, reduces coronary atherosclerosis in diabetic, hypercholesterolemic swine. In: Novel Approaches to Plaque Rupture and Regression: Abstract 266. Circulation 116:II_33

    Google Scholar 

  114. Mohler ER III, Ballantyne CM, Davidson MH et al (2008) The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 51:1632–1641

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to the University Grants Commission, New Delhi and Indian Council of Medical Research, New Delhi for partly financing our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakraborti, S. et al. (2014). Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_7

Download citation

Publish with us

Policies and ethics