Skip to main content

Phospholipase A and Breast Cancer

  • Chapter
  • First Online:
  • 6319 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Dysregulated eicosanoid signalling is emerging as a crucial factor in diverse disease processes that include oncogenesis. Breast carcinoma progression is the result of the subversion of multiple intracellular signalling pathways found in normal mammary tissue that impact upon the differentiation, proliferation and survival of tumour cells, as well as the stimulation of angiogenesis. Phospholipase A (PLA), as the enzyme initiating arachidonic acid release from membrane phospholipids, is located at a critical junction between hormone- and growth factor-regulated signalling cascades. PLA itself or the other enzymes that catalyse downstream eicosanoid metabolism may provide novel therapeutic targets for the treatment of breast carcinoma. This review describes the contribution of PLA and its products to the progression of breast carcinoma and the interaction of eicosanoid signalling with other cascades modulated by oestrogen, epidermal growth factor, signal transducers and activators of transcription, mammalian target of rapamycin and also cell metabolism in tumour cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hortobagyi GN, de la Garza Salazar J, Pritchard K et al (2005) The global breast cancer burden: variations in epidemiology and survival. Clin Breast Cancer 6:391–401

    Article  PubMed  Google Scholar 

  2. Jemal A, Ward E, Thun MJ (2007) Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res 9:R28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jordan VC (2007) Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nat Rev Cancer 7:46–53

    Article  CAS  PubMed  Google Scholar 

  7. Rabindran SK (2005) Antitumor activity of HER-2 inhibitors. Cancer Lett 227:9–23

    Article  CAS  PubMed  Google Scholar 

  8. Linn SC, Van’t Veer LJ (2009) Clinical relevance of the triple-negative breast cancer concept: genetic basis and clinical utility of the concept. Eur J Cancer 45(suppl 1):11–26

    Article  PubMed  Google Scholar 

  9. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68–69:3–58

    Article  PubMed  Google Scholar 

  10. Nakanishi M, Rosenberg DW (2006) Roles of cPLA(2)α and arachidonic acid in cancer. Biochim Biophys Acta 1761:1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirabayashi T, Murayama T, Shimizu T (2004) Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 27:1168–1173

    Article  CAS  PubMed  Google Scholar 

  12. Holmes MD, Hunter DJ, Colditz GA et al (1999) Association of dietary intake of fat and fatty acids with risk of breast cancer. J Am Med Assoc 281:914–920

    Article  CAS  Google Scholar 

  13. Thiebaut AC, Chajes V, Gerber M et al (2009) Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124:924–931

    Article  CAS  PubMed  Google Scholar 

  14. Kibbey WE, Bronn DG, Minton JP (1979) Prostaglandin synthetase and prostaglandin E2 levels in human breast carcinoma. Prostaglandins Med 2:133–139

    Article  CAS  PubMed  Google Scholar 

  15. Rolland PH, Martin PM, Jacquemier J et al (1980) Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst 64:1061–1070

    CAS  PubMed  Google Scholar 

  16. James ND, Sydes MR, Mason MD et al (2012) Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial. Lancet Oncol 13:549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    Article  CAS  PubMed  Google Scholar 

  18. Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469

    Article  CAS  PubMed  Google Scholar 

  19. Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272:16709–16712

    Article  CAS  PubMed  Google Scholar 

  20. Thomas W, Caiazza F, Harvey BJ (2008) Estrogen, phospholipase A and breast cancer. Front Biosci 13:2604–2613

    Article  CAS  PubMed  Google Scholar 

  21. Breyer MD, Breyer RM (2001) G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 63:579–605

    Article  CAS  PubMed  Google Scholar 

  22. Cuendet M, Pezzuto JM (2000) The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 17:109–157

    Article  CAS  PubMed  Google Scholar 

  23. Mauritz I, Westermayer S, Marian B et al (2006) Prostaglandin E(2) stimulates progression-related gene expression in early colorectal adenoma cells. Br J Cancer 94:1718–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosch S, Ramer R, Brune K, Hinz B (2005) Prostaglandin E2 induces cyclooxygenase-2 expression in human non-pigmented ciliary epithelial cells through activation of p38 and p42/44 mitogen-activated protein kinases. Biochem Biophys Res Commun 338:1171–1178

    Article  PubMed  Google Scholar 

  25. Richards JA, Petrel TA, Brueggemeier RW (2002) Signaling pathways regulating aromatase and cyclooxygenases in normal and malignant breast cells. J Steroid Biochem Mol Biol 80:203–212

    Article  CAS  PubMed  Google Scholar 

  26. Salhab M, Singh-Ranger G, Mokbel R et al (2007) Cyclooxygenase-2 mRNA expression correlates with aromatase expression in human breast cancer. J Surg Oncol 96:424–428

    Article  CAS  PubMed  Google Scholar 

  27. Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210

    Article  PubMed  PubMed Central  Google Scholar 

  28. Agrawal A, Fentiman IS (2008) NSAIDs and breast cancer: a possible prevention and treatment strategy. Int J Clin Pract 62:444–449

    Article  CAS  PubMed  Google Scholar 

  29. Singh-Ranger G, Salhab M, Mokbel K (2008) The role of cyclooxygenase-2 in breast cancer: review. Breast Cancer Res Treat 109:189–198

    Article  CAS  PubMed  Google Scholar 

  30. Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6:130–140

    Article  CAS  PubMed  Google Scholar 

  31. Jiang WG, Douglas-Jones AG, Mansel RE (2006) Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 74:125–134

    Article  CAS  PubMed  Google Scholar 

  32. McCormick DL, Spicer AM (1987) Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by N-methyl-N-nitrosourea. Cancer Lett 37:139–146

    Article  CAS  PubMed  Google Scholar 

  33. Kennett SB, Roberts JD, Olden K (2004) Requirement of protein kinase C micro activation and calpain-mediated proteolysis for arachidonic acid-stimulated adhesion of MDA-MB-435 human mammary carcinoma cells to collagen type IV. J Biol Chem 279:3300–3307

    Article  CAS  PubMed  Google Scholar 

  34. Navarro-Tito N, Robledo T, Salazar EP (2008) Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp Cell Res 314:3340–3355

    Article  CAS  PubMed  Google Scholar 

  35. Foghsgaard L, Lademann U, Wissing D et al (2002) Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J Biol Chem 277:39499–39506

    Article  CAS  PubMed  Google Scholar 

  36. Wen ZH, Su YC, Lai PL et al (2013) Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 32:160–170

    Article  CAS  PubMed  Google Scholar 

  37. Kerjaschki D, Bago-Horvath Z, Rudas M et al (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 121:2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh AK, Singh R, Naz F et al (2012) Structure based design and synthesis of peptide inhibitor of human LOX-12: in vitro and in vivo analysis of a novel therapeutic agent for breast cancer. PLoS One 7:e32521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilakivi-Clarke L (2000) Estrogens, BRCA1, and breast cancer. Cancer Res 60:4993–5001

    CAS  PubMed  Google Scholar 

  40. McPherson K, Steel CM, Dixon JM (2000) ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. Br Med J 321:624–628

    Article  CAS  Google Scholar 

  41. Beatson G (1896) On the treatment of inoperable cases of carcinoma of the mamma. Suggestions for a new method of treatment with illustrative cases. Lancet 2:104–107

    Article  Google Scholar 

  42. Bocchinfuso WP, Korach KS (1997) Mammary gland development and tumorigenesis in oestrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2:323–334

    Article  CAS  PubMed  Google Scholar 

  43. Russo J, Russo IH (2006) The role of oestrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol 102:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caiazza F, Harvey BJ, Thomas W (2010) Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth. Mol Endocrinol 24:953–968

    Article  CAS  PubMed  Google Scholar 

  45. Thomas W, Coen N, Faherty S et al (2006) Oestrogen induces phospholipase A(2) activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids 71:256–265

    Article  CAS  PubMed  Google Scholar 

  46. Knowlden JM, Hutcheson IR, Jones HE et al (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044

    Article  CAS  PubMed  Google Scholar 

  47. Pietras RJ (2003) Interactions between oestrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 9:361–373

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Tarruella S, Schiff R (2007) The dynamics of oestrogen receptor status in breast cancer: re-shaping the paradigm. Clin Cancer Res 13:6921–6925

    Article  CAS  PubMed  Google Scholar 

  49. Ristimaki A, Sivula A, Lundin J et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635

    CAS  PubMed  Google Scholar 

  50. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657

    Article  CAS  PubMed  Google Scholar 

  51. Vadlamudi R, Mandal M, Adam L et al (1999) Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 18:305–314

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita S, Yamashita J, Ogawa M (1994) Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br J Cancer 69:1166–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caiazza F, McCarthy NS, Young L et al (2011) Cytosolic phospholipase A2-alpha expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours. Br J Cancer 104:338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aoki J (2004) Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15:477–489

    Article  CAS  PubMed  Google Scholar 

  55. Boucharaba A, Serre CM, Gres S et al (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Glunde K, Jie C, Bhujwalla ZM (2004) Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res 64:4270–4276

    Article  CAS  PubMed  Google Scholar 

  57. Boyan BD, Sylvia VL, Frambach T et al (2003) Estrogen-dependent rapid activation of protein kinase C in oestrogen receptor-positive MCF-7 breast cancer cells and oestrogen receptor-negative HCC38 cells is membrane-mediated and inhibited by tamoxifen. Endocrinology 144:1812–1824

    Article  CAS  PubMed  Google Scholar 

  58. Yamashita S, Yamashita J, Sakamoto K et al (1993) Increased expression of membrane-associated phospholipase A2 shows malignant potential of human breast cancer cells. Cancer 71:3058–3064

    Article  CAS  PubMed  Google Scholar 

  59. Liou JY, Aleksic N, Chen SF et al (2005) Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A2 in human cancer cells: implication in apoptosis resistance. Exp Cell Res 306:75–84

    Article  CAS  PubMed  Google Scholar 

  60. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suh YJ, Chada S, McKenzie T et al (2005) Synergistic tumoricidal effect between celecoxib and adenoviral-mediated delivery of mda-7 in human breast cancer cells. Surgery 138:422–430

    Article  PubMed  Google Scholar 

  62. Samoha S, Arber N (2005) Cyclooxygenase-2 inhibition prevents colorectal cancer: from the bench to the bed side. Oncology 69(suppl 1):33–37

    Article  CAS  PubMed  Google Scholar 

  63. Park JY, Pillinger MH, Abramson SB (2006) Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 119:229–240

    Article  CAS  PubMed  Google Scholar 

  64. Nicholson RI, Hutcheson IR, Harper ME et al (2001) Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer 8:175–182

    Article  CAS  PubMed  Google Scholar 

  65. Arpino G, Gutierrez C, Weiss H et al (2007) Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J Natl Cancer Inst 99:694–705

    Article  CAS  PubMed  Google Scholar 

  66. Normanno N, Campiglio M, De LA et al (2002) Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol 13:65–72

    Article  CAS  PubMed  Google Scholar 

  67. Wang SC, Lien HC, Xia W et al (2004) Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6:251–261

    Article  CAS  PubMed  Google Scholar 

  68. Lanza-Jacoby S, Burd R, Rosato FE Jr et al (2006) Effect of simultaneous inhibition of epidermal growth factor receptor and cyclooxygenase-2 in HER-2/neu-positive breast cancer. Clin Cancer Res 12:6161–6169

    Article  CAS  PubMed  Google Scholar 

  69. Fiorio Pla A, Genova T, Pupo E et al (2010) Multiple roles of protein kinase a in arachidonic acid-mediated Ca2+ entry and tumor-derived human endothelial cell migration. Mol Cancer Res 8:1466–1476

    Article  CAS  PubMed  Google Scholar 

  70. Fiorio Pla A, Ong HL, Cheng KT et al (2012) TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31:200–212

    Article  CAS  PubMed  Google Scholar 

  71. Antoniotti S, Fattori P, Tomatis C et al (2009) Arachidonic acid and calcium signals in human breast tumor-derived endothelial cells: a proteomic study. J Recept Signal Transduct Res 29:257–265

    Article  CAS  PubMed  Google Scholar 

  72. Martinez-Orozco R, Navarro-Tito N, Soto-Guzman A et al (2010) Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A. Eur J Cell Biol 89:476–488

    Article  CAS  PubMed  Google Scholar 

  73. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maloberti PM, Duarte AB, Orlando UD et al (2010) Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 5:e15540

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhai B, Yang H, Mancini A et al (2010) Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway. J Biol Chem 285:23568–23580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pender-Cudlip MC, Krag KJ, Martini D et al (2013) Delta-6-desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Sci 104:760–764

    Article  CAS  PubMed  Google Scholar 

  78. Azordegan N, Fraser V, Le K et al (2013) Carcinogenesis alters fatty acid profile in breast tissue. Mol Cell Biochem 374:223–232

    Article  CAS  PubMed  Google Scholar 

  79. Soto-Guzman A, Villegas-Comonfort S, Cortes-Reynosa P, Perez Salazar E (2013) Role of arachidonic acid metabolism in Stat5 activation induced by oleic acid in MDA-MB-231 breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 88:243–249

    Article  CAS  PubMed  Google Scholar 

  80. Wagner KU, Rui H (2008) Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 13:93–103

    Article  PubMed  Google Scholar 

  81. Lopez LC, Maillet CM, Oleszkowicz K, Shur BD (1989) Cell surface and Golgi pools of beta-1,4-galactosyltransferase are differentially regulated during embryonal carcinoma cell differentiation. Mol Cell Biol 9:2370–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Villegas-Comonfort S, Serna-Marquez N, Galindo-Hernandez O et al (2012) Arachidonic acid induces an increase of beta-1,4-galactosyltransferase I expression in MDA-MB-231 breast cancer cells. J Cell Biochem 113:3330–3341

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Author is supported by funding from Science Found Ireland (12/TIDA/I2372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, W. (2014). Phospholipase A and Breast Cancer. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_6

Download citation

Publish with us

Policies and ethics