Skip to main content

The Structures and Functions of Intracellular Phospholipase A1 Family Proteins

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6322 Accesses

Abstract

Phospholipase A1 is an enzyme that hydrolyzes phospholipids, producing 2-acyl-lysophospholipids and fatty acids. Intracellular phospholipase A1 (iPLA1) functions inside cells. Except for a short lipase consensus sequence (G–X–S–X–G), the overall primary structures of iPLA1 proteins differ from those of other phospholipases. While yeast, nematode, fruit fly, and Arabidopsis each have only one iPLA1 gene, mammals including humans possess three iPLA1 genes (phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1/iPLA1α, p125/Sec23IP/iPLA1β, and KIAA0725p/DDHD2/iPLA1γ). The three mammalian iPLA1 proteins are localized in different subcellular compartments, suggesting their different roles. All the iPLA1 family proteins have a domain named DDHD, in addition to a lipase consensus sequence, and some of them have a sterile alpha motif (SAM). Studies of the three mammalian iPLA1 proteins have demonstrated that the lipase consensus sequence and the DDHD domain are involved in their enzymatic activity, and that the tandem SAM-DDHD domain is important for binding to intracellular membranes. Recent studies have revealed the physiological functions of the iPLA1 proteins. p125 plays a role in vesicular transport and seems to be involved in spermiogenesis. As to human diseases, mutations of the PA-PLA1 and KIAA0725p genes are responsible for hereditary spastic paraplegia, a neurodegenerative disorder. In this chapter, we focus on the mammalian iPLA1 proteins and provide an overview of their structures and functions. We also briefly mention the physiological functions of nonmammalian iPLA1 family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue K, Arai H, Aoki J (2004) Phospholipase A1-structures, physiological and patho-physiological roles in mammals. In: Muller G, Petry S (eds) Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Wiley, Weinheim, pp 23–39

    Google Scholar 

  2. Richmond GS, Smith TK (2011) Phospholipases A1. Int J Mol Sci 12:588–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Carriere F, Withers-Martinez C, van Tilbeurgh H et al (1998) Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. Biochim Biophys Acta 1376:417–432

    Article  CAS  PubMed  Google Scholar 

  4. Aoki J, Inoue A, Makide K et al (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    Article  CAS  PubMed  Google Scholar 

  5. Higgs HN, Glomset JA (1994) Identification of a phosphatidic acid-preferring phospholipase Al from bovine brain and testis. Proc Natl Acad Sci U S A 91:9574–9578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Higgs HN, Han MH, Johnson GE, Glomset JA (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    Article  CAS  PubMed  Google Scholar 

  7. Tani K, Mizoguchi T, Iwamatsu A et al (1999) p125 is a novel mammalian Sec23p-interacting protein with structural similarity to phospholipid-modifying proteins. J Biol Chem 274:20505–20512

    Article  CAS  PubMed  Google Scholar 

  8. Nakajima K, Sonoda H, Mizoguchi T et al (2002) A novel phospholipase A1 with sequence homology to a mammalian Sec23p-interacting protein, p125. J Biol Chem 277:11329–11335

    Article  CAS  PubMed  Google Scholar 

  9. Higgs HN, Glomset JA (1996) Purification and properties of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 271:10874–10883

    Article  CAS  PubMed  Google Scholar 

  10. Uchiyama S, Miyazaki Y, Amakasu Y et al (1999) Characterization of heparin low-affinity phospholipase A1 present in brain and testicular tissue. J Biochem 125:1001–1010

    Article  CAS  PubMed  Google Scholar 

  11. Yamashita A, Kumazawa T, Koga H et al (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD. Biochim Biophys Acta 1801:711–720

    Article  CAS  PubMed  Google Scholar 

  12. Inoue H, Baba T, Sato S et al (2012) Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. Biochim Biophys Acta 1823:930–939

    Article  CAS  PubMed  Google Scholar 

  13. Imae R, Inoue T, Kimura M et al (2010) Intracellular phospholipase A1 and acyl transferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol. Mol Biol Cell 21:3114–3124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Han MH, Han DK, Aebersold RH, Glomset JA (2001) Effects of protein kinase CK2, extracellular signal-regulated kinase 2, and protein phosphatase 2A on a phosphatidic acid-preferring phospholipase A1. J Biol Chem 276:27698–27708

    Article  CAS  PubMed  Google Scholar 

  15. Shimoi W, Ezawa I, Nakamoto K et al (2005) p125 is localized in endoplasmic reticulum exit sites and involved in their organization. J Biol Chem 280:10141–10148

    Article  CAS  PubMed  Google Scholar 

  16. D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P2. J Cell Sci 121:1955–1963

    Article  PubMed  Google Scholar 

  17. Sato S, Inoue H, Kogure T et al (2010) Golgi-localized KIAA0725p regulates membrane trafficking from the Golgi apparatus to the plasma membrane in mammalian cells. FEBS Lett 584:4389–4395

    Article  CAS  PubMed  Google Scholar 

  18. Baba T, Yamamoto A, Tagaya M, Tani K (2013) A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p. Mol Cell Biochem 376:151–161

    Article  CAS  PubMed  Google Scholar 

  19. Shindou H, Hishikawa D, Harayama T et al (2013) Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 154:21–28

    Article  CAS  PubMed  Google Scholar 

  20. Ha KD, Clarke BA, Brown WJ (2012) Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta 1821:1078–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Morikawa RK, Aoki J, Kano F et al (2009) Intracellular phospholipase A1γ (iPLA1γ) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 284:26620–26630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tesson C, Nawara M, Salih MA et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ et al (2012) Mutations in DDHD2, encoding an intracellular phospholipase A1, cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91:1073–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gonzalez M, Nampoothiri S, Kornblum C et al (2013) Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J Hum Genet 21:1214–1218

    Article  CAS  PubMed  Google Scholar 

  25. Blackstone C (2012) Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci 35:25–47

    Article  CAS  PubMed  Google Scholar 

  26. Fink JM (2013) Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126:307–328

    Article  CAS  PubMed  Google Scholar 

  27. Bouslam N, Benomar A, Azzedine H (2005) Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 57:567–571

    Article  CAS  PubMed  Google Scholar 

  28. Zanetti G, Pahuja KB, Studer S et al (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14:20–28

    Article  PubMed  Google Scholar 

  29. Budnik A, Stephens DJ (2009) ER exit sites—localization and control of COPII vesicle formation. FEBS Lett 583:3796–3803

    Article  CAS  PubMed  Google Scholar 

  30. Gillon AD, Latham CF, Miller EA (2012) Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta 1821:1040–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ong YS, Tang BL, Loo LS, Hong W (2010) p125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER-Golgi transport. J Cell Biol 190:331–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Arimitsu N, Kogure T, Baba T et al (2011) p125/Sec23-interacting protein (Sec23ip) is required for spermiogenesis. FEBS Lett 585:2171–2176

    Article  CAS  PubMed  Google Scholar 

  33. Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–801

    Article  CAS  PubMed  Google Scholar 

  34. Hoppins S, Collins SR, Cassidy-Stone A et al (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  36. Kanamori T, Inoue T, Sakamoto T et al (2008) β-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 27:1647–1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Pellis-van Berkel W, Verheijen MH, Cuppen E et al (2005) Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity. Mol Biol Cell 16:106–116

    Article  CAS  PubMed  Google Scholar 

  38. Morita MT, Kato T, Nagafusa K et al (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718

    Article  CAS  PubMed  Google Scholar 

  40. Kato T, Morita MT, Fukaki H et al (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Roth MG (2008) Molecular mechanisms of PLD function in membrane traffic. Traffic 9:1233–1239

    Article  CAS  PubMed  Google Scholar 

  42. Yang JS, Gad H, Lee SY et al (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10:1146–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Huang H, Gao Q, Peng X et al (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20:376–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Tomoyuki Shishido for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuko Tani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tani, K., Baba, T., Inoue, H. (2014). The Structures and Functions of Intracellular Phospholipase A1 Family Proteins. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_5

Download citation

Publish with us

Policies and ethics