Skip to main content

Role of Phospholipases and Oxidized Phospholipids in Inflammation

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Long thought of as a bystander in pathophysiological processes, lipid molecules have emerged as bioactive mediators of cellular activity. Oxidized phospholipids (OxPLs), generated during enzymatic and non-enzymatic processes, modulate cellular processes through receptor-mediated pathways that can effect a whole host of activities including apoptosis, monocyte adhesion, platelet aggregation, and regulation of immune responses. Initially discovered as platelet activating factor analogs, there have been close to 50 distinct OxPL molecules that have been identified within biological tissues. With the advent of robust analytical systems, we are better able to identify and quantitate these molecules in an ever growing list of different biological tissues which has allowed for the generation of a comprehensive oxolipid profiles in both normal and disease states. Given the increased affinity of phospholipases towards OxPLs we are in the early stages of understanding of the complex interplay between the modification of OxPL through phospholipase activity and the cellular responses to the released hydrolyzed products. In this review we will summarize the role of OxPL in different pathological states and the specific phospholipases that have been shown to interact with OxPLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chisolm G, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28:1815–1826

    Article  CAS  PubMed  Google Scholar 

  2. Fessel J, Porter NA, Moore KP et al (2002) Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc Natl Acad Sci U S A 99:16713–16718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Weinstein E, Li H, Lawson JA et al (2000) Prothrombinase acceleration by oxidatively damaged phospholipids. J Biol Chem 275:22925–22930

    Article  CAS  PubMed  Google Scholar 

  4. Marathe G et al (2002) Activation of vascular cells by PAF-like lipids in oxidized LDL. Vasc Pharmacol 38(4):193–200

    Article  CAS  Google Scholar 

  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  6. Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  8. Cour M, Gomez L, Mewton N et al (2011) Postconditioning: from the bench to bedside. J Cardiovasc Pharmacol Ther 16:17–130

    Article  Google Scholar 

  9. Piper H, Meuter K, Schäfer C (2003) Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 75:8

    Article  Google Scholar 

  10. Crompton M (2000) Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol 529:11–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Oskolkova O, Afonyushkin T, Preinerstorfer B et al (2010) Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J Immunol 185:7706–7712

    Article  CAS  PubMed  Google Scholar 

  12. Lambeth J (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17

    Article  PubMed  Google Scholar 

  13. Zweier J, Talukder M (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190

    Article  CAS  PubMed  Google Scholar 

  14. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    Article  CAS  PubMed  Google Scholar 

  15. Frangogiannis N, Smith C, Entman M (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  CAS  PubMed  Google Scholar 

  16. Schneider C, Porter N, Brash A (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283:15539–15543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Allen D, Hasanally D, Ravandi A (2013) Role of oxidized phospholipids in cardiovascular pathology. Clin Lipidol 8:205–215

    Article  CAS  Google Scholar 

  18. Nonas S, Miller I, Kawkritinarong K et al (2006) Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury. Am J Respir Crit Care Med 173:1130–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ravandi A, Babaei S, Leung R et al (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109

    CAS  PubMed  Google Scholar 

  20. Li R, Mouillesseaux KP, Montoya D et al (2006) Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circ Res 98:642–650

    Article  CAS  PubMed  Google Scholar 

  21. Birukova A, Fu P, Chatchavalvanich S et al (2007) Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 292:L924–L935

    Article  CAS  PubMed  Google Scholar 

  22. Furukawa M, Gohda T, Tanimoto M, Tomino Y (2013) Pathogenesis and novel treatment from the mouse model of type 2 diabetic nephropathy. Sci World J 2013:928197

    Article  Google Scholar 

  23. Paschos A, Pandya R, Duivenvoorden WC, Pinthus JH (2013) Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis 16:217–225

    Article  CAS  PubMed  Google Scholar 

  24. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190

    Article  CAS  PubMed  Google Scholar 

  25. Hammond V, Morgan AH, Lauder S et al (2012) Novel keto-phospholipids are generated by monocytes and macrophages, detected in cystic fibrosis, and activate peroxisome proliferator-activated receptor-γ. J Biol Chem 287:41651–41666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hernandes M, Britto L (2012) NADPH oxidase and neurodegeneration. Curr Neuropharmacol 10:321–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wenk M (2010) Lipidomics: new tools and applications. Cell 143:888–895

    Article  CAS  PubMed  Google Scholar 

  28. Han X, Gross R (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91:10635–10639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nakanishi H, Iida Y, Shimizu T, Taguchi R (2009) Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:1366–1374

    Article  CAS  PubMed  Google Scholar 

  30. Gruber F, Bicker W, Oskolkova OV et al (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53:1232–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Quehenberger O, Armando AM, Brown AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Weir J, Wong G, Barlow CK et al (2013) Plasma lipid profiling in a large population-based cohort. J Lipid Res 54:2898–2908

    Article  CAS  PubMed  Google Scholar 

  33. Andreyev A, Fahy E, Guan Z et al (2010) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51:2785–2797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dennis E, Deems RA, Harkewicz R et al (2010) A mouse macrophage lipidome. J Biol Chem 285:39976–39985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. White C, Ali A, Hasanally D et al (2013) A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. J Heart Lung Transplant 32:734–743

    Article  PubMed  Google Scholar 

  36. Gargalovic P, Imura M, Zhang B et al (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A 103:12741–12746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Moore K, Sheedy F, Fisher E (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  PubMed  Google Scholar 

  38. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445

    Article  CAS  PubMed  Google Scholar 

  39. Tyurina YY, Tyurin VA, Zhao Q et al (2004) Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochem Biophys Res Commun 324:1059–1064

    Article  CAS  PubMed  Google Scholar 

  40. Thomas CP, Morgan LT, Maskrey BH et al (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285:6891–6903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Podrez E, Byzova TV, Febbraio M (2007) Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13:1086–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Androulakis N, Durand H, Ninio E, Tsoukatos DC (2005) Molecular and mechanistic characterization of platelet-activating factor-like bioactivity produced upon LDL oxidation. J Lipid Res 46:1923–1932

    Article  CAS  PubMed  Google Scholar 

  43. Singleton PA, Chatchavalvanich S, Fu P et al (2009) Akt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ Res 104:978–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bochkov V, Oskolkova OV, Birukov KG et al (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Weismann D, Binder C (2012) The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta 1818:2465–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bochkov V (2007) Inflammatory profile of oxidized phospholipids. Thromb Haemost 97:348–354

    CAS  PubMed  Google Scholar 

  47. Zimman A, Mouillesseaux KP, Le T et al (2007) Vascular endothelial growth factor receptor 2 plays a role in the activation of aortic endothelial cells by oxidized phospholipids. Arterioscler Thromb Vasc Biol 27:332–338

    Article  CAS  PubMed  Google Scholar 

  48. Walton K, Hsieh X, Gharavi N et al (2003) Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J Biol Chem 278:29661–29666

    Article  CAS  PubMed  Google Scholar 

  49. Tsiantoulas D, Gruber S, Binder C (2012) B-1 cell immunoglobulin directed against oxidation-specific epitopes. Front Immunol 3:1–6

    Google Scholar 

  50. Perry H, Bender T, McNamara C (2012) B cell subsets in atherosclerosis. Front Immunol 3:1–11

    Google Scholar 

  51. Binder CJ, Chou MY, Fogelstrand L et al (2008) Natural antibodies in murine atherosclerosis. Curr Drug Targets 9:190–195

    Article  CAS  PubMed  Google Scholar 

  52. Chou MY, Hartvigsen K, Hansen LF et al (2008) Oxidation-specific epitopes are important targets of innate immunity. J Intern Med 263:479–488

    Article  CAS  PubMed  Google Scholar 

  53. Shaw P, Hörkkö S, Chang MK et al (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105:1731–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hörkkö S, Bird DA, Miller E et al (1999) Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103:117–128

    Article  PubMed Central  PubMed  Google Scholar 

  55. Chang MK, Binder CJ, Torzewski M et al (2002) C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 99:13043–13048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chang MK, Hartvigsen K, Ryu J et al (2012) The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. J Inflamm (London, England) 9:42

    Article  CAS  Google Scholar 

  57. Boullier A, Friedman P, Harkewicz R et al (2005) Phosphocholine as a pattern recognition ligand for CD36. J Lipid Res 46:969–976

    Article  CAS  PubMed  Google Scholar 

  58. Febbraio M, Hajjar D, Silverstein R (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Haserück N, Erl W, Pandey D et al (2004) The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors. Blood 103:2585–2592

    Article  PubMed  Google Scholar 

  60. Göpfert MS, Siedler F, Siess W, Sellmayer A (2005) Structural identification of oxidized acyl-phosphatidylcholines that induce platelet activation. J Vasc Res 42:120–132

    Article  PubMed  Google Scholar 

  61. Berliner J, Leitinger N, Tsimikas S (2009) The role of oxidized phospholipids in atherosclerosis. J Lipid Res 50:S207–S212

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gharavi NM, Baker NA, Mouillesseaux KP et al (2006) Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids. Circ Res 98:768–776

    Article  CAS  PubMed  Google Scholar 

  63. Qin J, Testai FD, Dawson S et al (2009) Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 110:1388–1399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  65. Dinasarapu RA, Gupta S, Ram Maurya M et al (2013) A combined omics study on activated macrophages—enhanced role of STATs in apoptosis, immunity and lipid metabolism. Bioinformatics (Oxford, England) 2013:1–9

    Google Scholar 

  66. Lartigue L, Faustin B (2013) Mitochondria: metabolic regulators of innate immune responses to pathogens and cell stress. Int J Biochem Cell Biol 45:2052–2056

    Article  CAS  PubMed  Google Scholar 

  67. Chen R, Feldstein A, McIntyre T (2009) Suppression of mitochondrial function by oxidatively truncated phospholipids is reversible, aided by bid, and suppressed by Bcl-XL. J Biol Chem 284:26297–26308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Shih PT, Elices MJ, Fang ZT et al (1999) Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin. J Clin Invest 103:613–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Vora DK, Fang ZT, Liva SM et al (1997) Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 80:810–818

    Article  CAS  PubMed  Google Scholar 

  70. Birukova AA, Starosta V, Tian X et al (2013) Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res 161:495–504

    Article  CAS  PubMed  Google Scholar 

  71. Kadl A, Galkina E, Leitinger N (2009) Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation. Arthritis Rheum 60:1362–1371

    Article  PubMed Central  PubMed  Google Scholar 

  72. Furnkranz A, Schober A, Bochkov VN et al (2005) Oxidized phospholipids trigger atherogenic inflammation in murine arteries. Arterioscler Thromb Vasc Biol 25:633–638

    Article  CAS  PubMed  Google Scholar 

  73. Kopf M, Baumann H, Freer G et al (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368(6469):339–342

    Article  CAS  PubMed  Google Scholar 

  74. Gottlieb RA, Burleson KO, Kloner RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Gustafsson A, Gottlieb R (2003) Mechanisms of apoptosis in the heart. J Clin Immunol 23:447–459

    Article  CAS  PubMed  Google Scholar 

  76. Halestrap A, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366:79–94

    Article  CAS  PubMed  Google Scholar 

  77. Chen R, Yang L, McIntyre T (2007) Cytotoxic phospholipid oxidation products. Cell death from mitochondrial damage and the intrinsic caspase cascade. J Biol Chem 282:24842–24850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Fruhwirth G, Moumtzi A, Loidl A et al (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761:1060–1069

    Article  CAS  PubMed  Google Scholar 

  79. Stemmer U, Dunai ZA, Koller D et al (2012) Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis 11:110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wallgren M, Lidman M, Pham QD et al (2012) The oxidized phospholipid PazePC modulates interactions between Bax and mitochondrial membranes. Biochim Biophys Acta 1818:2718–2724

    Article  CAS  PubMed  Google Scholar 

  81. Mughal W, Kirshenbaum L (2011) Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 16:102–108

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Stremler KE, Stafforini DM, Prescott SM, McIntyre TM (1991) Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates. J Biol Chem 266:11095–11103

    CAS  PubMed  Google Scholar 

  83. Bergmark C, Dewan A, Orsoni A et al (2008) A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res 49:2230–2239

    Article  CAS  PubMed  Google Scholar 

  84. Davis B, Koster G, Douet LJ et al (2008) Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J Biol Chem 283:6428–6437

    Article  CAS  PubMed  Google Scholar 

  85. Rivera R, Chun J (2006) Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160:25–46

    Article  Google Scholar 

  86. Salgo MG, Corongiu FP, Sevanian A (1993) Enhanced interfacial catalysis and hydrolytic specificity of phospholipase A2 toward peroxidized phosphatidylcholine vesicles. Arch Biochem Biophys 304:123–132

    Article  CAS  PubMed  Google Scholar 

  87. Tyurin VA, Yanamala N, Tyurina YY et al (2012) Specificity of lipoprotein-associated phospholipase A(2) toward oxidized phosphatidylserines: liquid chromatography-electrospray ionization mass spectrometry characterization of products and computer modeling of interactions. Biochemistry 51:9736–9750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kokotos G, Hsu YH, Burke JE et al (2010) Potent and selective fluoroketone inhibitors of group VIA calcium-independent phospholipase A2. J Med Chem 53:3602–3610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Dennis E, Cao J, Hsu YH et al (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Code C, Mahalka AK, Bry K, Kinnunen PK (2010) Activation of phospholipase A2 by 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine in vitro. Biochim Biophys Acta 1798:1593–1600

    Article  CAS  PubMed  Google Scholar 

  91. Cordella-Miele E, Miele L, Mukherjee A (1990) A novel transglutaminase-mediated post-translational modification of phospholipase A2 dramatically increases its catalytic activity. J Biol Chem 265:17180–17188

    CAS  PubMed  Google Scholar 

  92. Samoilova EV, Pirkova AA, Prokazova NV, Korotaeva AA (2010) Effects of LDL lipids on activity of group IIA secretory phospholipase A2. Bull Exp Biol Med 150:39–41

    Article  CAS  PubMed  Google Scholar 

  93. Koumanov K, Wolf C, Béreziat G (1997) Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J 326:227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Korotaeva AA, Samoilova EV, Piksina GF, Prokazova NV (2010) Oxidized phosphatidylcholine stimulates activity of secretory phospholipase A2 group IIA and abolishes sphingomyelin-induced inhibition of the enzyme. Prostaglandins Other Lipid Mediat 91:38–41

    Article  CAS  PubMed  Google Scholar 

  95. Korotaeva A, Samoilova E, Pavlunina T, Panasenko OM (2013) Halogenated phospholipids regulate secretory phospholipase A2 group IIA activity. Chem Phys Lipids 167–168:51–56

    Article  PubMed  Google Scholar 

  96. Pucer A, Brglez V, Payre C et al (2013) Group X secreted phospholipase A2 induces lipid droplet formation and prolongs breast cancer cell survival. Mol Cancer 12:111

    Article  PubMed Central  PubMed  Google Scholar 

  97. Murph M, Tanaka T, Pang J et al (2007) Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. Methods Enzymol 433:1–25

    Article  CAS  PubMed  Google Scholar 

  98. Moses G, Jensen MD, Lue LF et al (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ravandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hasanally, D., Chaudhary, R., Ravandi, A. (2014). Role of Phospholipases and Oxidized Phospholipids in Inflammation. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_3

Download citation

Publish with us

Policies and ethics