Skip to main content

Role of Phospholipases in Regulation of Cardiolipin Biosynthesis and Remodeling in the Heart and Mammalian Cells

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Cardiolipin is a key mitochondrial membrane phospholipid involved in the regulation of generation of ATP. Cardiolipin synthesis and remodeling are tightly regulated processes in eukaryotic cells. The role of phospholipases in the regulation of cardiolipin metabolism is becoming much clearer. Cardiolipin is hydrolysed by several classes of phospholipases including calcium-independent phospholipase A2, secretory phospholipase A2, and cytosolic phospholipase A2. Mitochondrial calcium-independent phospholipase A2 gamma has emerged as a key player not only in the regulated hydrolysis of cardiolipin to monolysocardiolipin, but also in the overall regulation of mitochondrial function and energy production. The purpose of this chapter is to summarize some of the more current findings on the role of phospholipases in the regulation of cardiolipin metabolism in the heart and mammalian tissues. In addition, a brief discussion on the role of exogenous phospholipase-treatment of cells on cardiolipin metabolism is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White DA (1973) Form and function of phospholipids. In: Ansell GB, Hawthorne JN, Dawson RM (eds) Phospholipids. Elsevier Biomedical, Amsterdam

    Google Scholar 

  2. Reig J, Domingo E, Segura R et al (1993) Rat myocardial tissue lipids and their effect on ventricular electrical activity: influence on dietary lipids. Cardiovasc Res 27:364–370

    Article  CAS  PubMed  Google Scholar 

  3. Hostetler KY (1982) Polyglycerophospholipids: phosphatidylglycerol, diphosphatidylglycerol and bis (monoacylglycero) phosphate. In: Hawthorne JN, Ansell GB (eds) Phospholipids. Elsevier, Amsterdam, p 215

    Google Scholar 

  4. Pangborn M (1942) Isolation and purification of a serologically active phospholipid from beef heart. J Biol Chem 143:247

    CAS  Google Scholar 

  5. Poorthuis BJ, Yazaki PJ, Hostetler KY (1976) An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res 17:433–437

    CAS  PubMed  Google Scholar 

  6. Hatch GM (2004) Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol 82:99–112

    Article  CAS  PubMed  Google Scholar 

  7. Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021:217–226

    Article  CAS  PubMed  Google Scholar 

  8. Hovius R, Thijssen J, van der Linden P et al (1993) Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett 330:71–76

    Article  CAS  PubMed  Google Scholar 

  9. Stoffel W, Schiefer HG (1968) Biosynthesis and composition of phosphatides in outer and inner mitochondrial membranes. Hoppe Seylers Z Physiol Chem 349:1017–1026

    Article  CAS  PubMed  Google Scholar 

  10. Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    Article  CAS  PubMed  Google Scholar 

  12. Ascenzi P, Polticelli F, Marino M et al (2011) Cardiolipin drives cytochrome C proapoptotic and antiapoptotic actions. IUBMB Life 63:160–165

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalvez F, Schug ZT, Houtkooper RH et al (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183:681–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Christie DA, Lemke CD, Elias IM et al (2011) Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol Cell Biol 31:3845–3856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yamaoka S, Urade R, Kito M (1990) Cardiolipin molecular species in rat heart mitochondria are sensitive to essential fatty acid-deficient dietary lipids. J Nutr 120:415–421

    CAS  PubMed  Google Scholar 

  16. Ohtsuka T, Nishijima M, Suzuki K, Akamatsu Y (1993) Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem 268:22914–22919

    CAS  PubMed  Google Scholar 

  17. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome C from mitochondria. FASEB J 17:2202–2208

    Article  CAS  PubMed  Google Scholar 

  18. Hatch GM (1998) Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Int J Mol Med 1:33–41

    CAS  PubMed  Google Scholar 

  19. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830

    Article  CAS  PubMed  Google Scholar 

  20. Osman C, Haag M, Wieland FT et al (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29:1976–1987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. van Gestel RA, Rijken PJ, Surinova S et al (2010) The influence of the acyl chain composition of cardiolipin on the stability of mitochondrial complexes; an unexpected effect of cardiolipin in α-ketoglutarate dehydrogenase and prohibitin complexes. J Proteomics 73:806–814

    Article  PubMed  Google Scholar 

  22. Christie DA, Kirchhof MG, Vardhana S et al (2012) Mitochondrial and plasma membrane pools of stomatin-like protein 2 coalesce at the immunological synapse during T cell activation. PLoS One 7:e37144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Saini-Chohan HK, Dakshinamurti S, Taylor WA et al (2011) Persistent pulmonary hypertension results in reduced tetralinoleoyl-cardiolipin and mitochondrial complex II + III during the development of right ventricular hypertrophy in the neonatal pig heart. Am J Physiol Heart Circ Physiol 301:H1415–H1424

    Article  CAS  PubMed  Google Scholar 

  24. Hauff KD, Hatch GM (2006) Cardiolipin metabolism and Barth syndrome. Prog Lipid Res 45:91–101

    Article  CAS  PubMed  Google Scholar 

  25. Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49:1607–1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    Article  CAS  PubMed  Google Scholar 

  27. Hauff KD, Hatch GM (2010) Reduction in cholesterol synthesis in response to serum starvation in lymphoblasts of a patient with Barth syndrome. Biochem Cell Biol 88:595–602

    Article  CAS  PubMed  Google Scholar 

  28. Lu B, Kelher MR, Lee DP et al (2004) Complex expression pattern of the Barth syndrome gene product tafazzin in human cell lines and murine tissues. Biochem Cell Biol 82:569–576

    Article  CAS  PubMed  Google Scholar 

  29. Acehan D, Vaz F, Houtkooper RH et al (2011) Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 286:899–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Soustek MS, Falk DJ, Mah CS et al (2011) Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum Gene Ther 22:865–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brandner K, Mick DU, Frazier AE et al (2005) Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome. Mol Biol Cell 16:5202–5214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ma L, Vaz FM, Gu Z et al (2004) The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome. J Biol Chem 279:44394–44399

    Article  CAS  PubMed  Google Scholar 

  33. Khuchua Z, Yue Z, Batts L, Strauss AW (2006) A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function. Circ Res 99:201–208

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Zhang S, Malhotra A et al (2009) Characterization of tafazzin splice variants from humans and fruit flies. J Biol Chem 284:29230–29239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hatch GM (1994) Cardiolipin biosynthesis in the isolated heart. Biochem J 297:201–208

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Heacock AM, Uhler MD, Agranoff BW (1996) Cloning of CDP-diacylglycerol synthase from a human neuronal cell line. J Neurochem 67:2200–2203

    Article  CAS  PubMed  Google Scholar 

  37. Athea Y, Viollet B, Mateo P et al (2007) AMP-activated protein kinase α2 deficiency affects cardiac cardiolipin homeostasis and mitochondrial function. Diabetes 56:786–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jiang YJ, Lu B, Xu FY et al (2004) Stimulation of cardiac cardiolipin biosynthesis by PPARα activation. J Lipid Res 45:244–252

    Article  CAS  PubMed  Google Scholar 

  39. Hatch GM, Gu Y, Xu FY et al (2008) StARD13(Dlc-2) RhoGap mediates ceramide activation of phosphatidylglycerolphosphate synthase and drug response in Chinese hamster ovary cells. Mol Biol Cell 19:1083–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84:91–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Xu FY, McBride H, Acehan D et al (2010) The dynamics of cardiolipin synthesis post-mitochondrial fusion. Biochim Biophys Acta 1798:1577–1585

    Article  CAS  PubMed  Google Scholar 

  42. Xiao J, Engel JL, Zhang J et al (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci USA 108:11860–11865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang J, Guan Z, Murphy AN et al (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13:690–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hostetler KY, Van den Bosch H, Van Deenen LL (1971) Biosynthesis of cardiolipin in liver mitochondria. Biochim Biophys Acta 239:113–119

    Article  CAS  PubMed  Google Scholar 

  45. Schlame M, Haldar D (1993) Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. J Biol Chem 268:74–79

    CAS  PubMed  Google Scholar 

  46. Schlame M, Hostetler KY (1991) Solubilization, purification, and characterization of cardiolipin synthase from rat liver mitochondria. Demonstration of its phospholipid requirement. J Biol Chem 266:22398–22403

    CAS  PubMed  Google Scholar 

  47. Lu B, Xu FY, Jiang YJ et al (2006) Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS1). J Lipid Res 47:1140–1145

    Article  CAS  PubMed  Google Scholar 

  48. Chen D, Zhang XY, Shi Y (2006) Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. Biochem J 398:169–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Houtkooper RH, Akbari H, van Lenthe H et al (2006) Identification and characterization of human cardiolipin synthase. FEBS Lett 580:3059–3064

    Article  CAS  PubMed  Google Scholar 

  50. Lu B, Xu FY, Taylor WA et al (2011) Cardiolipin synthase-1 mRNA expression does not correlate with endogenous cardiolipin synthase enzyme activity in vitro and in vivo in mammalian lipopolysaccharide models of inflammation. Inflammation 34:247–254

    Article  CAS  PubMed  Google Scholar 

  51. Sparagna GC, Chicco AJ, Murphy RC et al (2007) Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res 48:1559–1570

    Article  CAS  PubMed  Google Scholar 

  52. Lands WE (2000) Stories about acyl chains. Biochim Biophys Acta 1483:1–14

    Article  CAS  PubMed  Google Scholar 

  53. Buckland AG, Kinkaid AR, Wilton DC (1998) Cardiolipin hydrolysis by human phospholipases A2. The multiple enzymatic activities of human cytosolic phospholipase A2. Biochim Biophys Acta 1390:65–72

    Article  CAS  PubMed  Google Scholar 

  54. Mancuso DJ, Sims HF, Han X et al (2007) Genetic ablation of calcium-independent phospholipase A2γ leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. J Biol Chem 282:34611–34622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Seleznev K, Zhao C, Zhang XH et al (2006) Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J Biol Chem 281:22275–22288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Muralikrishna Adibhatla R, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40:376–387

    Article  CAS  PubMed  Google Scholar 

  57. Su H, McClarty G, Dong F et al (2004) Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279:9409–9416

    Article  CAS  PubMed  Google Scholar 

  58. Cao J, Liu Y, Lockwood J et al (2004) A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT-1) in mouse. J Biol Chem 279:31727–31734

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Y, Chen YQ, Li S et al (2009) The microsomal cardiolipin remodeling enzyme acyl-CoA lysocardiolipin acyltransferase is an acyltransferase of multiple anionic lysophospholipids. J Lipid Res 50:945–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Li J, Romestaing C, Han X et al (2010) Cardiolipin remodeling by ALCAT-1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 12:154–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Saini-Chohan HK, Hatch GM (2009) Biological actions and metabolism of currently used pharmacological agents for the treatment of congestive heart failure. Curr Drug Metab 10:206–219

    Article  CAS  PubMed  Google Scholar 

  62. Schlame M, Rustow B (1990) Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. Biochem J 272:589–595

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ma BJ, Taylor WA, Dolinsky VW, Hatch GM (1999) Acylation of monolysocardiolipin in rat heart. J Lipid Res 40:1837–1845

    CAS  PubMed  Google Scholar 

  64. Taylor WA, Hatch GM (2003) Purification and characterization of monolysocardiolipin acyltransferase from pig liver mitochondria. J Biol Chem 278:12716–12721

    Article  CAS  PubMed  Google Scholar 

  65. Taylor WA, Hatch GM (2009) Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1). J Biol Chem 284:30360–30371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Xu Y, Kelley RI, Blanck TJ, Schlame M (2003) Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 278:51380–51385

    Article  CAS  PubMed  Google Scholar 

  67. Xu Y, Malhotra A, Ren M, Schlame M (2006) The enzymatic function of tafazzin. J Biol Chem 281:39217–39224

    Article  CAS  PubMed  Google Scholar 

  68. Zhuravleva E, Gut H, Hynx D et al (2012) Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development. Mol Cell Biol 32:2685–2697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang L, Bell RJ, Kiebish MA et al (2011) A mathematical model for the determination of steady-state cardiolipin remodeling mechanisms using lipidomic data. PLoS One 6:e21170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hauff K, Linda D, Hatch GM (2009) Mechanism of the elevation in cardiolipin during HeLa cell entry into the S-phase of the human cell cycle. Biochem J 417:573–582

    Article  CAS  PubMed  Google Scholar 

  71. Taylor WA, Mejia EM, Mitchell RW et al (2012) Human trifunctional protein α links cardiolipin remodeling to β-oxidation. PLoS One 7:e48628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Xu FY, Kelly SL, Hatch GM (1999) N-Acetylsphingosine stimulates phosphatidylglycerolphosphate synthase activity in H9c2 cardiac cells. Biochem J 337:483–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Degli Esposti M (2003) The mitochondrial battlefield and membrane lipids during cell death signalling. Ital J Biochem 52:43–50

    CAS  PubMed  Google Scholar 

  74. Sorice M, Circella A, Cristea IM et al (2004) Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death Differ 11:1133–1145

    Article  CAS  PubMed  Google Scholar 

  75. Liu J, Durrant D, Yang HS et al (2005) The interaction between tBid and cardiolipin or monolysocardiolipin. Biochem Biophys Res Commun 330:865–870

    Article  CAS  PubMed  Google Scholar 

  76. Danos M, Taylor WA, Hatch GM (2008) Mitochondrial monolysocardiolipin acyltransferase is elevated in the surviving population of H9c2 cardiac myoblast cells exposed to 2-deoxyglucose-induced apoptosis. Biochem Cell Biol 86:11–20

    Article  CAS  PubMed  Google Scholar 

  77. Yasuda Y, Yoshinaga N, Murayama T, Nomura Y (1999) Inhibition of hydrogen peroxide-induced apoptosis but not arachidonic acid release in GH3 cell by EGF. Brain Res 850:197–206

    Article  CAS  PubMed  Google Scholar 

  78. Thang SH, Yasuda Y, Umezawa M et al (2000) Inhibition of phospholipase A2 activity by S-nitroso-cysteine in a cyclic GMP-independent manner in PC12 cells. Eur J Pharmacol 395:183–191

    Article  CAS  PubMed  Google Scholar 

  79. Fraiz J, Jones RB (1988) Chlamydial infections. Annu Rev Med 39:357–370

    Article  CAS  PubMed  Google Scholar 

  80. Wylie JL, Hatch GM, McClarty G (1997) Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179:7233–7242

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Hatch GM, McClarty G (1998) Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66:3727–3735

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Hatch GM, McClarty G (2004) C. trachomatis-infection accelerates metabolism of phosphatidylcholine derived from low density lipoprotein but does not affect phosphatidylcholine secretion from hepatocytes. BMC Microbiol 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  83. Fischer K, Chatterjee D, Torrelles J et al (2001) Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J Immunol 167:2187–2192

    CAS  PubMed  Google Scholar 

  84. Zhao Z, Zhang X, Zhao C et al (2010) Protection of pancreatic beta-cells by group VIA phospholipase A2-mediated repair of mitochondrial membrane peroxidation. Endocrinology 151:3038–3048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. McHowat J, Tappia PS, Liu S et al (2001) Redistribution and abnormal activity of phospholipase A2 isoenzymes in postinfarct congestive heart failure. Am J Physiol Cell Physiol 280:C573–C580

    CAS  PubMed  Google Scholar 

  86. Zachman DK, Chicco AJ, McCune SA et al (2010) The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J Lipid Res 51:525–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Mancuso DJ, Kotzbauer P, Wozniak DF et al (2009) Genetic ablation of calcium-independent phospholipase A2γ leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J Biol Chem 284:35632–35644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Yoda E, Hachisu K, Taketomi Y et al (2010) Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2γ-deficient mice. J Lipid Res 51:3003–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Mancuso DJ, Sims HF, Yang K et al (2010) Genetic ablation of calcium-independent phospholipase A2γ prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation. J Biol Chem 285:36495–36510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Therese P (2006) Persistent pulmonary hypertension of the newborn. Paediatr Respir Rev 7(suppl 1):S175–S176

    Article  PubMed  Google Scholar 

  91. Vosatka RJ (2002) Persistent pulmonary hypertension of the newborn. N Engl J Med 346:864

    Article  PubMed  Google Scholar 

  92. Xu FY, Taylor WA, Hatch GM (1998) Lysophosphatidylcholine inhibits cardiolipin biosynthesis in H9c2 cardiac myoblast cells. Arch Biochem Biophys 349:341–348

    Article  CAS  PubMed  Google Scholar 

  93. Xu FY, Kelly SL, Taylor WA, Hatch GM (1998) On the mechanism of the phospholipase C-mediated attenuation of cardiolipin biosynthesis in H9c2 cardiac myoblast cells. Mol Cell Biochem 188:217–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by HSFC and CIHR operating grants (Grant M. Hatch) and the DREAM Theme (Vernon W. Dolinsky and Grant M. Hatch). Edgard M. Mejia is the recipient of a University of Manitoba Tricouncil GETS graduate studentship. Grant M. Hatch is a Canada Research Chair in Molecular Cardiolipin Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Hatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mejia, E.M., Dolinsky, V.W., Hatch, G.M. (2014). Role of Phospholipases in Regulation of Cardiolipin Biosynthesis and Remodeling in the Heart and Mammalian Cells. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_2

Download citation

Publish with us

Policies and ethics