Skip to main content

Phospholipase C Signaling in Heart Disease

  • Chapter
  • First Online:
  • 6338 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Phospholipase C (PLC) expression and activity have repeatedly been reported to be elevated in cardiomyocytes under pathological conditions, including ischemia/reperfusion, hypertrophy, and chamber dilatation. In recent studies the subtypes of PLC involved have been identified, paving the way for studies of the mechanisms by which PLC may be activated under pathological conditions and how this may contribute to disease progression. PLC subtypes are localized by subtype- and tissue-specific binding to scaffolding proteins providing the possibility of developing cardiac-specific therapies based on inhibition of the localization of particular PLC subtypes in cardiomyocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  Google Scholar 

  2. Exton JH (1994) Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56:349–369

    Article  CAS  PubMed  Google Scholar 

  3. Arthur JF, Matkovich SJ, Mitchell CJ et al (2001) Evidence for selective coupling of α1-adrenergic receptors to phospholipase Cβ1 in rat neonatal cardiomyocytes. J Biol Chem 276:37341–37346

    Article  CAS  PubMed  Google Scholar 

  4. Woodcock EA, Grubb DR, Filtz TM et al (2009) Selective activation of the “b” splice variant of phospholipase Cβ1 in chronically dilated human and mouse atria. J Mol Cell Cardiol 47:676–683

    Article  CAS  PubMed  Google Scholar 

  5. Gresset A, Hicks SN, Harden TK, Sondek J (2010) Mechanism of phosphorylation-induced activation of phospholipase Cγ isozymes. J Biol Chem 285:35836–35847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Shen E, Fan J, Chen R et al (2007) Phospholipase Cγ1 signalling regulates lipopolysaccharide-induced cyclooxygenase-2 expression in cardiomyocytes. J Mol Cell Cardiol 43:308–318

    Article  CAS  PubMed  Google Scholar 

  7. Allen V, Swigart P, Cheung R et al (1997) Regulation of inositol lipid-specific phospholipase Cδ by changes in Ca2+ ion concentrations. Biochem J 327:545–552

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Woodcock EA, Mitchell CJ, Biden TJ (2003) Phospholipase Cδ1 does not mediate Ca2+ responses in neonatal rat cardiomyocytes. FEBS Lett 546:325–328

    Article  CAS  PubMed  Google Scholar 

  9. Kelley GG, Reks SE, Ondrako JM, Smrcka AV (2001) Phospholipase Cε: a novel Ras effector. EMBO J 20:743–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sorli SC, Bunney TD, Sugden PH et al (2005) Signaling properties and expression in normal and tumor tissues of two phospholipase Cε splice variants. Oncogene 24:90–100

    Article  CAS  PubMed  Google Scholar 

  11. Woodcock EA, White LBS, Smith AI, McLeod JK (1987) Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61:625–631

    Article  CAS  PubMed  Google Scholar 

  12. Brown SL, Brown JH (1983) Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24:351–356

    CAS  PubMed  Google Scholar 

  13. Kuraja IJ, Tanner JK, Woodcock EA (1990) Endothelin stimulates phosphatidylinositol turnover in rat right and left atria. Eur J Pharmacol 189:299–306

    Article  CAS  PubMed  Google Scholar 

  14. Wu D, Lee C, Rhee S, Simon M (1992) Activation of phospholipaseC by the α subunits of the Gq and G11 proteins in transfected cos-7 cells. J Biol Chem 25:1811–1817

    Google Scholar 

  15. Ibarra C, Estrada M, Carrasco L et al (2004) Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 279:7554–7565

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Oestreich EA, Maekawa N et al (2005) Phospholipase Cε modulates β-adrenergic receptor dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 97:1305–1313

    Article  CAS  PubMed  Google Scholar 

  17. Kelley GG, Reks SE, Smrcka AV (2004) Hormonal regulation of phospholipase Cε through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J 378:129–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. von Harsdorf R, Lang R, Woodcock EA (1989) Dilatation of the right atrium stimulates phosphatidylinositol turnover. Clin Exp Pharmacol Physiol 16:341–344

    Article  Google Scholar 

  19. von Harsdorf R, Lang R, Fullerton M, Woodcock EA (1989) Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res 65:494–501

    Article  Google Scholar 

  20. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes—potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Storch U, Schnitzler MMY, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol 302:H1241–H1249

    CAS  Google Scholar 

  22. Hwang JI, Kim HS, Lee JR et al (2005) The interaction of phospholipase Cβ3 with Shank2 regulates mGluR-mediated calcium signal. J Biol Chem 280:12467–12473

    Article  CAS  PubMed  Google Scholar 

  23. Hwang JI, Heo K, Shin KJ et al (2000) Regulation of phospholipase Cβ3 activity by Na+/H+ exchanger regulatory factor 2. J Biol Chem 275:16632–16637

    Article  CAS  PubMed  Google Scholar 

  24. Grubb DR, Vasilevski O, Huynh H, Woodcock EA (2008) The extreme C-terminal region of phospholipase Cβ1 determines subcellular localization and function; the “b” splice variant mediates α1-adrenergic receptor responses in cardiomyocytes. FASEB J 22:2768–2774

    Article  CAS  PubMed  Google Scholar 

  25. Tang Y, Tang J, Chen Z et al (2000) Association of mammalian Trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    Article  CAS  PubMed  Google Scholar 

  26. Mahon MJ, Segre GV (2004) Stimulation by parathyroid hormone of a NHERF-1-assembled complex consisting of the parathyroid hormone I receptor, phospholipase Cβ, and actin increases intracellular calcium in opossum kidney cells. J Biol Chem 279:23550–23558

    Article  CAS  PubMed  Google Scholar 

  27. Suh PG, Hwang JI, Ryu SH et al (2001) The roles of PDZ-containing proteins in PLCβ-mediated signaling. Biochem Biophys Res Commun 288:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Kaneko T, Li L, Li SS (2008) The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952

    Article  CAS  PubMed  Google Scholar 

  29. Schlundt A, Sticht J, Piotukh K et al (2009) Proline-rich sequence recognition. Mol Cell Proteomics 8:2474–2486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lim S, Naisbitt S, Yoon J et al (1999) Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 274:29510–29518

    Article  CAS  PubMed  Google Scholar 

  31. Vasilevski O, Grubb DR, Filtz TM et al (2008) Ins(1,4,5)P3 regulates phospholipase Cβ1 expression in cardiomyocytes. J Mol Cell Cardiol 45:679–684

    Article  CAS  PubMed  Google Scholar 

  32. Zachos NC, van Rossum DB, Li XH et al (2009) Phospholipase Cγ binds directly to the Na+/H+ exchanger 3 and is required for calcium regulation of exchange activity. J Biol Chem 284:19437–19444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. van Rossum DB, Patterson RL, Sharma S et al (2005) Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  PubMed  Google Scholar 

  34. Onohara N, Nishida M, Inoue R et al (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang L, Malik S, Kelley GG et al (2011) Phospholipase Cε scaffolds to muscle-specific A kinase anchoring protein (mAKAPβ) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 286:23012–23021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rauch H, Motsch J, Bottiger BW (2006) Newer approaches to the pharmacological management of heart failure. Curr Opin Anaesthesiol 19:75–81

    Article  PubMed  Google Scholar 

  37. Streb H, Bayerdorffer E, Haase W et al (1984) Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253

    Article  CAS  PubMed  Google Scholar 

  38. Nishizuka Y (1984) Protein kinases in signal transduction. Trends Biochem Sci 9:163–166

    Google Scholar 

  39. Rybin VO, Guo J, Harleton E et al (2012) Regulatory domain determinants that control PKD1 activity. J Biol Chem 287:22609–22615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Woodcock EA, Kistler PM, Ju YK (2009) Phosphoinositide signalling and cardiac arrhythmias. Cardiovasc Res 82:286–295

    Article  CAS  PubMed  Google Scholar 

  41. Streb H, Irvine R, Berridge M, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–68

    Article  CAS  PubMed  Google Scholar 

  42. Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11

    Article  CAS  PubMed  Google Scholar 

  43. Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99:283–291

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Jacobsen AN, Du XJ, Dart AM, Woodcock EA (1997) Ins(1,4,5)P3 and arrhythmogenic responses during myocardial reperfusion: evidence for receptor specificity. Am J Physiol 42:H1119–H1125

    Google Scholar 

  46. Du X-J, Anderson K, Jacobsen A et al (1995) Suppression of ventricular arrhythmias during ischaemia-reperfusion by agents inhibiting Ins(1,4,5)P3 release. Circulation 91:2712–2716

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Zima AV, Sheikh F et al (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-receptor type 2-deficient mice. Circ Res 96:1274–1281

    Article  CAS  PubMed  Google Scholar 

  48. Nakayama H, Bodi I, Maillet M et al (2010) The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res 107:659–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Newton AC (2009) Lipid activation of protein kinases. J Lipid Res 50(suppl):S266–S271

    PubMed Central  PubMed  Google Scholar 

  50. Lemonnier L, Trebak M, Putney JW (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43:506–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Braz JC, Gregory K, Pathak A et al (2004) PKCα regulates cardiac contractility and propensity toward heart failure. Nat Med 10:248–254

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Matkovich SJ, Duan XJ et al (2011) Receptor-independent protein kinase Cα (PKCα) signaling by calpain-generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J Biol Chem 286:26943–26951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Inoguchi T, Battan R, Handler E et al (1992) Preferential elevation of protein kinase C isoform βII and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 89:11059–11063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Murriel CL, Churchill E, Inagaki K et al (2004) Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage—a mechanism involving BAD and the mitochondria. J Biol Chem 279:47985–47991

    Article  CAS  PubMed  Google Scholar 

  55. Ping PP, Zhang J, Qiu YM et al (1997) Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81:404–414

    Article  CAS  PubMed  Google Scholar 

  56. Steinberg SF (2012) Cardiac actions of protein kinase C isoforms. Physiology 27:130–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Nasuhoglu C, Feng SY, Mao YP et al (2002) Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions. Am J Physiol 283:C223–C234

    Article  CAS  Google Scholar 

  58. Meyer T, WellnerKienitz MC, Biewald A et al (2001) Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J Biol Chem 276:5650–5658

    Article  CAS  PubMed  Google Scholar 

  59. Cho H, Kim YA, Yoon JY et al (2005) Low mobility of phosphatidylinositol 4,5-bisphosphate underlies receptor specificity of Gq-mediated ion channel regulation in atrial myocytes. Proc Natl Acad Sci U S A 102:15241–15246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Nebl T, Oh SW, Luna EJ (2000) Membrane cytoskeleton: PIP2 pulls the strings. Curr Biol 10:R351–R354

    Article  CAS  PubMed  Google Scholar 

  61. Falkenburger BH, Jensen JB, Dickson EJ et al (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol 588:3179–3185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Schwertz D, Halverson J, Isaacson T et al (1987) Alterations on phospholipid metabolism in the globally ischemic rat heart: emphasis on phosphoilositide specific phospholipase C activity. J Mol Cell Cardiol 19:685–697

    Article  CAS  PubMed  Google Scholar 

  63. Corr PB, Yamada KA, DaTorre SD (1990) Modulation of α-adrenergic receptors and their intracellular coupling in the ischemic heart. Basic Res Cardiol 85(suppl 1):31–45

    PubMed  Google Scholar 

  64. Woodcock E, Lambert K, Phan T, Jacobsen A (1997) Inositol phosphate metabolism during myocardial ischemia. J Mol Cell Cardiol 29:449–460

    Article  CAS  PubMed  Google Scholar 

  65. Anderson K, Dart A, Woodcock E (1995) Inositol phosphate release and metabolism during myocardial ischemia and reperfusion in rat heart. Circ Res 76:261–268

    Article  CAS  PubMed  Google Scholar 

  66. Lochner A, Tromp E, Mouton R (1996) Signal transduction in myocardial ischaemia and reperfusion. Mol Cell Biochem 161:129–136

    Article  Google Scholar 

  67. Huisamen B, Mouton R, Opie LH, Lochner A (1994) Effects of ischaemia, reperfusion and α1-adrenergic receptor stimulation on the inositol trisphosphate receptor population in rat heart atria and ventricles. Mol Cell Biochem 140:23–30

    Article  CAS  PubMed  Google Scholar 

  68. Jacobsen AN, Du XJ, Lambert KA et al (1996) Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation 93:23–26

    Article  CAS  PubMed  Google Scholar 

  69. Asemu G, Dhalla NS, Tappia PS (2004) Inhibition of PLC improves postischemic recovery in isolated rat heart. Am J Physiol 287:H2598–H2605

    CAS  Google Scholar 

  70. Ju H, Zhao S, Tappia PS et al (1998) Expression of Gqα and PLCβ in scar and border tissue in heart failure due to myocardial infarction. Circulation 97:892–899

    Article  CAS  PubMed  Google Scholar 

  71. Miyamae M, Domae N, Zhou HZ et al (2003) Phospholipase C activation is required for cardioprotection by ethanol consumption. Exp Clin Cardiol 8:184–188

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Downey JM (1992) Ischemic preconditioning—nature’s own cardioprotective intervention. Trends Cardiovasc Med 2:170–176

    Article  CAS  PubMed  Google Scholar 

  73. Anderson KE, Woodcock EA (1995) Preconditioning of perfused rat heart inhibits reperfusion-induced release of inositol(1,4,5)trisphosphate. J Mol Cell Cardiol 27:2421–2431

    Article  CAS  PubMed  Google Scholar 

  74. Duquesnes N, Lezoualc’h F, Crozatier B (2011) PKCδ and PKCε: foes of the same family or strangers? J Mol Cell Cardiol 51:665–673

    Article  CAS  PubMed  Google Scholar 

  75. Harrison SN, Autelitano DJ, Wang BH et al (1998) Reduced reperfusion-induced Ins(1,4,5)P3 generation and arrhythmias in hearts expressing constitutively active α1B-adrenergic receptors. Circ Res 83:1232–1240

    Article  CAS  PubMed  Google Scholar 

  76. Amirahmadi F, Turnbull L, Du XJ et al (2008) Heightened α1A-adrenergic receptor activity suppresses ischaemia/reperfusion-induced Ins(1,4,5)P3 generation in the mouse heart: a comparison with ischaemic preconditioning. Clin Sci (Lond) 114:157–164

    Article  CAS  Google Scholar 

  77. Lang RE, Tholken H, Ganten D et al (1985) Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 314:264–266

    Article  CAS  PubMed  Google Scholar 

  78. von Harsdorf R, Lang R, Fullerton M et al (1988) Right atrial dilatation increases inositol-(1,4,5)trisphosphate accumulation: implications for the control of atrial natriuretic peptide secretion. FEBS Lett 233:201–215

    Article  Google Scholar 

  79. Pretorius L, Du XJ, Woodcock EA et al (2009) Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am J Pathol 175:998–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Mende U, Kagen A, Cohen A et al (1998) Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A 95:13893–13898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lu Z, Jiang YP, Ballou LM et al (2005) Gαq inhibits cardiac L-type Ca2+ channels through phosphatidylinositol 3-kinase. J Biol Chem 280:40347–40354

    Article  CAS  PubMed  Google Scholar 

  82. Hirose M, Takeishi Y, Niizeki T et al (2009) Diacylglycerol kinase ζ inhibits Gαq-induced atrial remodeling in transgenic mice. Heart Rhythm 6:78–84

    Article  PubMed  Google Scholar 

  83. Mende U, Semsarian C, Martins DC et al (2001) Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein αq: lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 33:1477–1491

    Article  CAS  PubMed  Google Scholar 

  84. Adams JW, Sakata Y, Davis MG et al (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A 95:10140–10145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Filtz TM, Grubb DR, McLeod-Dryden TJ et al (2009) Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b. FASEB J 23:3564–3570

    Article  CAS  PubMed  Google Scholar 

  86. Sakata Y, Hoit BD, Liggett SB et al (1998) Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97:1488–1495

    Article  CAS  PubMed  Google Scholar 

  87. Akhter SA, Luttrell LM, Rockman HA et al (1998) Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280:574–577

    Article  CAS  PubMed  Google Scholar 

  88. Esposito G, Rapacciuolo A, Naga Prasad SV et al (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92

    Article  CAS  PubMed  Google Scholar 

  89. Wettschureck N, Rutten H, Zywietz A et al (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat Med 7:1236–1240

    Article  CAS  PubMed  Google Scholar 

  90. Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807

    Article  CAS  PubMed  Google Scholar 

  91. Shankaranarayanan A, Thal DM, Tesmer VM et al (2008) Assembly of high order Gαq-effector complexes with RGS proteins. J Biol Chem 283:34923–34934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Rojas RJ, Yohe ME, Gershburg S et al (2007) Gαq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J Biol Chem 282:29201–29210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Kreienkamp HJ (2008) Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 186:365–380

    Article  CAS  PubMed  Google Scholar 

  94. Grubb DR, Iliades P, Cooley N et al (2011) Phospholipase C β1b associates with a Shank3 complex at the cardiac sarcolemma. FASEB J 25:1040–1047

    Article  CAS  PubMed  Google Scholar 

  95. Grubb DR, Luo JT, Yu YL, Woodcock EA (2012) Scaffolding protein Homer 1c mediates hypertrophic responses downstream of Gq in cardiomyocytes. FASEB J 26:596–603

    Article  CAS  PubMed  Google Scholar 

  96. Tu JC, Xiao B, Naisbitt S et al (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  CAS  PubMed  Google Scholar 

  97. Yuan JP, Lee KP, Hong JH, Muallem S (2012) The closing and opening of TRPC channels by Homer1 and STIM1. Acta Physiol 204:238–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Woodcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodcock, E.A. (2014). Phospholipase C Signaling in Heart Disease. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_17

Download citation

Publish with us

Policies and ethics