Skip to main content

Phosphoinositide-Specific Phospholipase C Enzymes and Cognitive Development and Decline

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6312 Accesses

Abstract

The development of the mammalian nervous system is a tightly regulated and complex process, which involves a number of signal transduction pathways, which controls the cascade of events, both spatially and temporally. Complex modifications of the structural and functional bases of the activities of the nervous system also occur in the cognitive decline often observed during aging. The phosphoinositide (PI) signal transduction pathway, which contributes to regulate the calcium levels by means of converting enzymes, such as the phosphoinositide-specific phospholipase C (PLC) family, interacts at a different hierarchy of control with a number of different molecules and/or pathways involved in neural development, neurogenesis and maintenance of the synaptic plasticity. The PI pathway was suggested to be involved in the complex mechanism of memory, crucially and strictly correlated to learning abilities. Specific roles were also suggested for PLC isoforms, on the basis of numerous evidences indicating the involvement in diseases which affect the nervous system, with special regard to cognitive impairment. The nature, meaning, and developmental period of PLC involvement in cognitive development and decline are still largely unclear and will require further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mostany R, Anstey JE, Crump KL et al (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33:4094–4104

    CAS  PubMed  Google Scholar 

  2. Annunziato L, Amoroso S, Pannaccione A et al (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139:125–133

    CAS  PubMed  Google Scholar 

  3. Kiryushko D, Novitskaya V, Soroka V et al (2006) Molecular mechanisms of Ca2+ signalling in neurons induced by the S100A4 protein. Mol Cell Biol 26:3625–3638

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Frebel K, Wiese S (2006) Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 34:1287–1290

    CAS  PubMed  Google Scholar 

  5. Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    CAS  PubMed  Google Scholar 

  6. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    CAS  PubMed  Google Scholar 

  7. Suh PG, Park J, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    CAS  PubMed  Google Scholar 

  8. Schmid RS, Pruitt WM, Maness PF (2000) A MAP kinase-signalling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 20:4177–4188

    CAS  PubMed  Google Scholar 

  9. Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci 110:14–28

    CAS  PubMed  Google Scholar 

  10. Ledeen RW, Wu G (2004) Nuclear lipids: key signaling effectors in the nervous system and other tissues. J Lipid Res 45:1–8

    CAS  PubMed  Google Scholar 

  11. Carey MB, Matsumoto SG (1996) Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 215:298–313

    Google Scholar 

  12. Bai Y, Meng Z, Cui M et al (2009) An Ang1-Tie2-PI3K axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience 160:371–381

    CAS  PubMed  Google Scholar 

  13. Nakamura Y, Fukami K (2009) Roles of phospholipase C isozymes in organogenesis and embryonic development. Physiology 24:332–341

    CAS  PubMed  Google Scholar 

  14. Poncet C, Frances V, Gristina R et al (1996) CD24, a glycosylphosphatidylinositol-anchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol 91:400–408

    CAS  PubMed  Google Scholar 

  15. Jung H, Kim HJ, Lee SK et al (2009) Negative feedback regulation of Wnt signalling by Gβγ-mediated reduction of Dishevelled. Exp Mol Med 41:695–706

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jessen U, Novitskaya V, Pedersen N et al (2001) The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells. J Neurochem 79:1149–1160

    CAS  PubMed  Google Scholar 

  17. Krog L, Bock E (1992) Glycosylation of neural cell adhesion molecules of the immunoglobulin superfamily. APMIS Suppl 27:53–70

    CAS  PubMed  Google Scholar 

  18. Asou H, Ono K, Uemura I et al (1996) Axonal growth-related cell surface molecule, neurin-1, involved in neuron-glia interaction. J Neurosci Res 45:571–587

    CAS  PubMed  Google Scholar 

  19. Zisch AH, D’Alessandri L, Ranscht B et al (1992) Neuronal cell adhesion molecule contactin/Fll binds to tenascin via its immunoglobulin-like domains. J Cell Biol 119:203–213

    CAS  PubMed  Google Scholar 

  20. Jones SM, Hofmann AD, Lieber JL, Ribera AB (1995) Overexpression of potassium channel RNA: in vivo development rescues neurons from suppression of morphological differentiation in vitro. J Neurosci 15:2867–2874

    CAS  PubMed  Google Scholar 

  21. Rigato F, Garwood J, Calco V et al (2002) Tenascin-C promotes neurite outgrowth of embryonic hippocampal neurons through the alternatively spliced fibronectin type III BD domains via activation of the cell adhesion molecule F3/contactin. J Neurosci 22:6596–6609

    CAS  PubMed  Google Scholar 

  22. Belcheva MM, Clark AL, Haas PD et al (2005) μ and κ opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem 280:27662–27669

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bilecki W, Zapart G, Ligęza A et al (2005) Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment. Cell Mol Life Sci 62:2369–2375

    CAS  PubMed  Google Scholar 

  24. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    CAS  PubMed  Google Scholar 

  25. Struyk AF, Canoll PD, Wolfgang MJ et al (1995) Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J Neurosci 15:2141–2156

    CAS  PubMed  Google Scholar 

  26. Gil OD, Zanazzi G, Struyk AF, Salzer JL (1998) Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci 18:9312–9325

    CAS  PubMed  Google Scholar 

  27. Nicot A, DiCicco-Bloom E (2001) Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci U S A 8:4758–4763

    Google Scholar 

  28. Dejda A, Jozwiak-Bebenista M, Nowak JZ (2006) PACAP, VIP, and PHI: effects on AC-, PLC-, and PLD-driven signalling systems in the primary glial cell cultures. Ann N Y Acad Sci 1070:220–225

    CAS  PubMed  Google Scholar 

  29. Itoh K, Ishima T, Kehler J, Hashimoto K (2011) Potentiation of NGF-induced neurite outgrowth in PC12 cells by papaverine: role played by PLC-γ, IP3 receptors. Brain Res 1377:32–40

    CAS  PubMed  Google Scholar 

  30. Oliveira Loureiro S, Heimfarth L, de Lima Pelaez P et al (2008) Homocysteine activates calcium-mediated cell signalling mechanisms targeting the cytoskeleton in rat hippocampus. Int J Dev Neurosci 26:447–455

    Google Scholar 

  31. Wang KH, Brose K, Arnott D et al (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 19:771–784

    Google Scholar 

  32. Salles J, Wallace MA, Fain JN (1993) Modulation of the phospholipase C activity in rat brain cortical membranes by simultaneous activation of distinct monoaminergic and cholinergic muscarinic receptors. Brain Res Mol Brain Res 20:111–117

    CAS  PubMed  Google Scholar 

  33. Katan M (2005) New insights into the families of PLC enzymes: looking back and going forward. Biochem J 391:e7–e9

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhang Y, Lin HY, Bell E, Woolf CJ (2004) DRAGON: a member of the repulsive guidance molecule-related family of neuronal- and muscle-expressed membrane proteins is regulated by DRG11 and has neuronal adhesive properties. J Neurosci 24:2027–2036

    PubMed  Google Scholar 

  35. Wallace MA, Claro E (1990) A novel role for dopamine: inhibition of muscarinic cholinergic-stimulated phosphoinositide hydrolysis in rat brain cortical membranes. Neurosci Lett 110:155–161

    CAS  PubMed  Google Scholar 

  36. Sekar MC, Hokin LE (1986) Phosphoinositide metabolism and cGMP levels are not coupled to the muscarinic-cholinergic receptor in human erythrocyte. Life Sci 39:1257–1262

    CAS  PubMed  Google Scholar 

  37. Chun J (1999) Lysophospholipid receptors: implications for neural signaling. Crit Rev Neurobiol 13:151–168

    CAS  PubMed  Google Scholar 

  38. Smallridge RC, Kiang JG, Gist ID et al (1992) U-73122, an aminosteroid phospholipase C antagonist, non-competitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells. Endocrinology 131:1883–1888

    CAS  PubMed  Google Scholar 

  39. Farias RN, Fiore AM, Pedersen JZ, Incerpi S (2006) Nongenomic actions of thyroid hormones: focus on membrane transport systems. Immun Endoc Metab Agents Med Chem 6:241–254

    CAS  Google Scholar 

  40. Hasbi A, Fan T, Alijaniaram M et al (2009) Calcium signalling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci U S A 106:21377–21382

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jope RS, Song L, Powers R (1994) 3H PtdIns hydrolysis in postmortem human brain membranes is mediated by the G-protein Gq/11 and phospholipase C-β. Biochemistry 304:655–659

    CAS  Google Scholar 

  42. Jose PA, Yu PY, Yamaguchi I et al (1995) Dopamine D1 receptor regulation of phospholipase C. Hypertens Res 18(suppl 1):S39–S42

    CAS  PubMed  Google Scholar 

  43. Li YC, Liu G, Hu JL et al (2010) Dopamine D1 receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons. J Neurochem 114:62–73

    CAS  PubMed  Google Scholar 

  44. Melliti K, Meza U, Fisher R, Adams B (1999) Regulators of G protein signalling attenuate the G protein-mediated inhibition of N-type Ca channels. J Gen Physiol 113:97–109

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Chuang SC, Bianchi R, Wong RKS (2000) Group I mGluR activation turns on a voltage-dependent inward current in hippocampal pyramidal cells. J Neurophysiol 83:2844–2853

    CAS  PubMed  Google Scholar 

  46. Floyd CL, Rzigalinski BA, Sitterding HA et al (2004) Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. J Neurotrauma 21:205–216

    PubMed  Google Scholar 

  47. Hannan AJ, Blakemore C, Katsnelson A et al (2001) PLC-β1, activated via mGluRs, mediates activity dependent differentiation in cerebral cortex. Nat Neurosci 4:282–288

    CAS  PubMed  Google Scholar 

  48. Rao TS, Lariosa-Willingham KD, Lin F et al (2004) Growth factor pre-treatment differentially regulates phosphoinositide turnover downstream of lysophospholipid receptor and metabotropic glutamate receptors in cultured rat cerebrocortical astrocytes. Int J Dev Neurosci 22:131–135

    CAS  PubMed  Google Scholar 

  49. Bordi F, Ugolini A (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog Neurobiol 59:55–79

    CAS  PubMed  Google Scholar 

  50. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    CAS  PubMed  Google Scholar 

  51. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 3:1–26

    Google Scholar 

  52. Bianchi E, Lehmann D, Vivoli E et al (2010) Involvement of PLC-β3 in the effect of morphine on memory retrieval in passive avoidance task. J Psychopharmacol 24:891–896

    CAS  PubMed  Google Scholar 

  53. Nelson TJ, Sun MK, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87

    CAS  PubMed  Google Scholar 

  54. Buckley CT, Caldwell KK (2004) Fear conditioning is associated with altered integration of PLC and ERK signaling in the hippocampus. Pharmacol Biochem Behav 79:633–640

    CAS  PubMed  Google Scholar 

  55. Leal G, Comprido D, Duarte CB (2013) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. doi:pii: S0028-3908(13)00142-1. 10.1016/j.neuropharm.2013.04.005

    Google Scholar 

  56. Knight SJ, Horsley SW, Regan R et al (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5:1–8

    CAS  PubMed  Google Scholar 

  57. Ross CA, Margolis RL, Reading SA et al (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    CAS  PubMed  Google Scholar 

  58. Spires TL, Molnar Z, Kind PC et al (2005) Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-β1 signalling. Cereb Cortex 15:385–393

    PubMed  Google Scholar 

  59. Kim D, Jun KS, Lee SB et al (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293

    CAS  PubMed  Google Scholar 

  60. Wallace MA, Claro E (1993) Transmembrane signaling through phospholipase C in human cortical membranes. Neurochem Res 18:139–145

    CAS  PubMed  Google Scholar 

  61. Choi WC, Gerfen CR, Suh PG, Rhee SG (1989) Immunohistochemical localization of a brain isozyme of phospholipase C (PLC III) in astroglia in rat brain. Brain Res 499:193–197

    CAS  PubMed  Google Scholar 

  62. Kurian MA, Meyer E, Vassallo G et al (2010) Phospholipase C β1 deficiency is associated with early-onset epileptic encephalopathy. Brain 133:2964–2970

    PubMed  Google Scholar 

  63. Poduri A, Chopra SS, Neilan EG et al (2012) Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia 53:e146–e150

    CAS  PubMed  Google Scholar 

  64. Vendrame M, Poduri A, Loddenkemper T et al (2011) Treatment of malignant migrating partial epilepsy of infancy with rufinamide: report of five cases. Epileptic Disord 13:18–21

    PubMed  Google Scholar 

  65. Girirajan S, Dennis MY, Baker C et al (2013) Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet 92:221–237

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lo Vasco VR (2011) Role of phosphoinositide-specific phospholipase C η2 in isolated and syndromic mental retardation. Eur Neurol 65:264–269

    CAS  PubMed  Google Scholar 

  67. Lo Vasco VR (2011) 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours. J Neurooncol 103:409–416

    PubMed  Google Scholar 

  68. Slavotinek A, Rosenberg M, Knight S et al (1999) Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet 36:405–411

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gajecka M, Mackay KL, Shaffer LG (2007) Monosomy 1p36 deletion syndrome. Am J Med Genet C Semin Med Genet 145:346–356

    Google Scholar 

  70. Shapira SK, McCaskill C, Northrup H et al (1997) Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet 61:642–650

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Heilstedt HA, Ballif BC, Howard LA et al (2003) Population data suggest that deletions of 1p36 are a relatively common chromosome abnormality. Clin Genet 64:310–316

    CAS  PubMed  Google Scholar 

  72. Wu YQ, Heilstedt HA, Bedell JA et al (1999) Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions. Hum Mol Genet 8:313–321

    CAS  PubMed  Google Scholar 

  73. Gajecka M, Yu W, Ballif BC et al (2005) Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 13:139–149

    CAS  PubMed  Google Scholar 

  74. Schultz D, Litt M, Smith L et al (1996) Localization of two potassium channel beta subunit genes, KCNA1B and KCNA2B. Genomics 31:389–391

    CAS  PubMed  Google Scholar 

  75. Emberger W, Windpassinger C, Petek E et al (2000) Assignment of the human GABAA receptor δ-subunit gene (GABRD) to chromosome band 1p36.3 distal to marker NIB1364 by radiation hybrid mapping. Cytogenet Cell Genet 89:281–282

    CAS  PubMed  Google Scholar 

  76. Fitzgibbon GJ, Clayton-Smith J, Banka S et al (2008) Array comparative genomic hybridisation-based identification of two imbalances of chromosome 1p in a 9-year-old girl with a monosomy 1p36 related phenotype and a family history of learning difficulties: a case report. J Med Case Reports 2:355

    PubMed Central  Google Scholar 

  77. Stewart AJ, Mukherjee J, Roberts SJ et al (2005) Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. Int J Mol Med 15:117–121

    CAS  PubMed  Google Scholar 

  78. Nakahara M, Shimozawa M, Nakamura Y et al (2005) A novel phospholipase C, PLC η2, is a neuron-specific isozyme. J Biol Chem 280:29128–29134

    CAS  PubMed  Google Scholar 

  79. Kanemaru K, Nakahara M, Nakamura Y et al (2010) Phospholipase C-η2 is highly expressed in the habenula and retina. Gene Expr Patterns 10:119–126

    CAS  PubMed  Google Scholar 

  80. Nicolle MM, Colombo PJ, Gallagher M, McKinney M (1999) Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J Neurosci 19:9604–9610

    CAS  PubMed  Google Scholar 

  81. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93:9926–9930

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Rasmussen T, Schliemann T, Sorensen JC et al (1996) Memory impaired aged rats: no loss of principle hippocampal and subicular neurons. Neurobiol Aging 17:143–147

    CAS  PubMed  Google Scholar 

  83. Shen J, Barnes CA (1996) Age-related decrease in cholinergic synaptic transmission in three hippocampal subfields. Neurobiol Aging 17:439–451

    CAS  PubMed  Google Scholar 

  84. Sugaya K, Chouinard M, Greene R et al (1996) Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment. J Neurosci 16:3427–3443

    CAS  PubMed  Google Scholar 

  85. Colombo PJ, Wetsel WC, Gallagher M (1997) Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc Natl Acad Sci U S A 94:14195–14199

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Shen J, Barnes CA, McNaughton BL et al (1997) The effect of aging on experience-dependent plasticity of hippocampal place cells. J Neurosci 17:6769–6782

    CAS  PubMed  Google Scholar 

  87. Tanila H, Shapiro M, Gallagher M, Eichenbaum H (1997) Brain aging: changes in the nature of information coding by the hippocampus. J Neurosci 17:5155–5166

    CAS  PubMed  Google Scholar 

  88. Tanila H, Sipila P, Shapiro M, Eichenbaum H (1997) Brain aging: impaired coding of novel environmental cues. J Neurosci 17:5167–5174

    CAS  PubMed  Google Scholar 

  89. Nicolle MM, Gallagher M, McKinney M (1999) No loss of synaptic proteins in the hippocampus of aged, behaviourally-impaired rats. Neurobiol Aging 20(3):343–348

    CAS  PubMed  Google Scholar 

  90. Cotman CW (2005) The role of neurotrophins in brain aging: a perspective in honor of Regino Perez-Polo. Neurochem Res 30:877–881

    CAS  PubMed  Google Scholar 

  91. Ferreire PA, Pak WL (1994) Bovine phospholipase C highly homologous to the norpA protein of Drosophila is expressed specifically in cones. J Biol Chem 269:3129–3131

    Google Scholar 

  92. Lumbreras M, Baamonde C, Martínez-Cué C et al (2006) Brain G protein-dependent signaling pathways in Down syndrome and Alzheimer’s disease. Amino Acids 31:449–456

    CAS  PubMed  Google Scholar 

  93. Skotko BG, Capone GT, Kishnani PS (2009) Down Syndrome Diagnosis Study Group. Postnatal diagnosis of Down syndrome: synthesis of the evidence on how best to deliver the news. Pediatrics 124:e751–e758

    PubMed  Google Scholar 

  94. Cork LC (1990) Neuropathology of Down syndrome and Alzheimer disease. Am J Med Genet Suppl 7:282–286

    CAS  PubMed  Google Scholar 

  95. Cowburn RF, O’Neill C, Bonkale WL et al (2001) Receptor-G-protein signaling in Alzheimer’s disease. Biochem Soc Symp 67:163–175

    CAS  PubMed  Google Scholar 

  96. Fernhall B, Otterstetter M (2003) Attenuated responses to sympathoexcitation in individuals with Down syndrome. J Appl Physiol 94:2158–2165

    PubMed  Google Scholar 

  97. Crews FT, Kurian P, Freund G (1994) Cholinergic and serotonergic stimulation of phosphoinositide hydrolysis is decreased in Alzheimer’s disease. Life Sci 55:1993–2002

    CAS  PubMed  Google Scholar 

  98. Jope RS, Song L, Powers RE (1997) Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiol Aging 18:111–120

    CAS  PubMed  Google Scholar 

  99. Ruiz de Azua I, Lumbreras MA, Zalduegui A et al (2001) Reduced phospholipase C-β activity and isoform expression in the cerebellum of Ts65Dn mouse: a model of Down syndrome. J Neurosci Res 66:540–550

    CAS  PubMed  Google Scholar 

  100. Piggott MA, Marshall EF, Thomas N et al (1999) Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: rostrocaudal distribution. Brain 122:1449–1468

    PubMed  Google Scholar 

  101. Baba M, Nakajo S, Tu PH et al (1998) Aggregation of a-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Campbell BC, Li QX, Culvenor JG et al (2000) Accumulation of insoluble a-synuclein in dementia with Lewy bodies. Neurobiol Dis 7:192–200

    CAS  PubMed  Google Scholar 

  103. Hashimoto M, Masliah E (1999) α-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 9:707–720

    CAS  PubMed  Google Scholar 

  104. Ince PG, Perry EK, Morris CM (1998) Dementia with Lewy bodies. A distinct non-Alzheimer dementia syndrome. Brain Pathol 8:299–324

    CAS  PubMed  Google Scholar 

  105. McKeith IG (2002) Dementia with Lewy bodies. Br J Psychiatry 180:144–147

    PubMed  Google Scholar 

  106. McKeith IG, Galasko D, Kosaka K (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB International workshop. Neurology 47:1113–1124

    CAS  PubMed  Google Scholar 

  107. Ince PG, McKeith IG (2003) Dementia with Lewy bodies. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 188–197

    Google Scholar 

  108. Hansen LA, Samuel W (1997) Criteria for Alzheimer’s disease and the nosology of dementia with Lewy bodies. Neurology 48:126–132

    CAS  PubMed  Google Scholar 

  109. Kosaka K (1993) Dementia and neuropathology in Lewy body disease. Adv Neurol 60:456–463

    CAS  PubMed  Google Scholar 

  110. Kosaka K, Iseki E (1996) Diffuse Lewy body disease within the spectrum of Lewy body disease. In: Perry RH, McKeith IG, Perry EK (eds) Dementia with Lewy bodies. Cambridge University Press, Cambridge, pp 238–247

    Google Scholar 

  111. Dalfò E, Albasanz JL, Martın M, Ferrer I (2004) Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular a-synuclein/phospholipase C (PLCh1) interactions. Brain Pathol 14:388–398

    PubMed  Google Scholar 

  112. Albasanz JL, Dalfó E, Ferrer I, Martín M (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 20:685–693

    CAS  PubMed  Google Scholar 

  113. Fabelo N, Martín V, Santpere G et al (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Iwatsubo T (2003) Aggregation of alpha-synuclein in the pathogenesis of Parkinson’s disease. J Neurol 250(suppl 3):III11–III14

    PubMed  Google Scholar 

  115. Braak H, Del Tredici K (2008) A new look at the corticostriatal-thalamocortical circuit in sporadic Parkinson’s disease. Nervenarzt 79:1440–1445

    CAS  PubMed  Google Scholar 

  116. Metzler-Baddeley C (2007) A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex 43:583–600

    PubMed  Google Scholar 

  117. Parkkinen L, Kauppinen T, Pirttila T et al (2005) α-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91

    CAS  PubMed  Google Scholar 

  118. Ferrer I (2009) Early involvement of the cerebral cortex in Parkinson’s disease: convergence of multiple metabolic defects. Prog Neurobiol 88:89–103

    CAS  PubMed  Google Scholar 

  119. Navarro A, Boveris A, Bández MJ et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson’s disease and in dementia with Lewy bodies. Free Radic Biol Med 46:1574–1580

    CAS  PubMed  Google Scholar 

  120. Christie WW, Han X (2003) Lipid analysis, 3rd edn. Oily Press, Bridgewater, UK

    Google Scholar 

  121. Sanchez-Ramos JR, Overvik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigrostriatum of Parkinson’s disease brain. Neurodegeneration 3:197–204

    Google Scholar 

  122. Dalfó E, Portero-Otín M, Ayala V et al (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816–830

    PubMed  Google Scholar 

  123. Gómez A, Ferrer I (2009) Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J Neurosci Res 87:1002–1013

    PubMed  Google Scholar 

  124. Huntington Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Google Scholar 

  125. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    CAS  PubMed  Google Scholar 

  126. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    CAS  PubMed  Google Scholar 

  127. Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    CAS  PubMed  Google Scholar 

  128. Foroud T, Siemers E, Kleindorfer D et al (1995) Cognitive scores in carriers of Huntington’s disease gene compared to noncarriers. Ann Neurol 37:657–664

    CAS  PubMed  Google Scholar 

  129. Lawrence AD, Hodges JR, Rosser AE et al (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121:1329–1341

    PubMed  Google Scholar 

  130. Giralt A, Rodrigo T, Martín ED et al (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipase Cgamma activity and glutamate receptor expression. Neuroscience 158:1234–1250

    CAS  PubMed  Google Scholar 

  131. Lione LA, Carter RJ, Hunt MJ et al (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437

    CAS  PubMed  Google Scholar 

  132. Mazarakis NK, Cybulska-Klosowicz A, Grote H et al (2005) Deficits in experience dependent cortical plasticity and sensory-discrimination learning in presymptomatic Huntington’s disease mice. J Neurosci 25:3059–3066

    CAS  PubMed  Google Scholar 

  133. Van Raamsdonk JM, Pearson J, Slow EJ et al (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25:4169–4180

    PubMed  Google Scholar 

  134. Minichiello L, Calella AM, Medina DL et al (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    CAS  PubMed  Google Scholar 

  135. Gruart A, Sciarretta C, Valenzuela-Harrington M et al (2007) Mutation at the TrkB PLC-γ-docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem 14:54–62

    PubMed Central  PubMed  Google Scholar 

  136. Koponen E, Voikar V, Riekki R et al (2004) Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCγ pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci 26:166–181

    CAS  PubMed  Google Scholar 

  137. World Health Organization (2004) World Mental Health Survey Consortium: prevalence, severity and unmet need for treatment of mental disorders in WHO world mental health surveys. J Am Med Assoc 291:2581–2590

    Google Scholar 

  138. Lauterbach E, Rumpf HJ, Ahrens B et al (2005) Assessing dimensional and categorical aspects of depression: validation of the AMDP Depression Scale. Eur Arch Psychiatry Clin Neurosci 255:15–19

    CAS  PubMed  Google Scholar 

  139. Bromet E, Andrade LH, Hwang I et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90

    PubMed Central  PubMed  Google Scholar 

  140. Kessler RC (2012) The costs of depression. Psychiatr Clin North Am 35:1–14

    PubMed Central  PubMed  Google Scholar 

  141. Jope RS, Song L, Li PP et al (1996) The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem 66:2402–2409

    CAS  PubMed  Google Scholar 

  142. Ebstein RP, Lerer B, Bennett ER et al (1988) Lithium modulation of second messenger signal amplification in man: inhibition of phosphatidylinositol-specific phospholipase C and adenylate cyclase activity. Psychiatry Res 24:45–52

    CAS  PubMed  Google Scholar 

  143. Pacheco MA, Jope RS (1996) Phosphoinositide signaling in human brain. Prog Neurobiol 50:255–273

    CAS  PubMed  Google Scholar 

  144. Lo Vasco VR, Longo L, Polonia P (2013) Phosphoinositide-specific phospholipase C β1 gene deletion in bipolar disorder affected patient. J Cell Commun Signal 7:25–29

    PubMed Central  PubMed  Google Scholar 

  145. Lo Vasco VR, Polonia P (2012) Molecular cytogenetic interphase analysis of phosphoinositide-specific phospholipase C β1 gene in paraffin-embedded brain samples of major depression patients. J Affect Disord 136:177–180

    CAS  PubMed  Google Scholar 

  146. Lo Vasco VR, Cardinale G, Polonia P (2012) Deletion of PLCB1 gene in schizophrenia affected patients. J Cell Mol Med 16:844–851

    PubMed  Google Scholar 

  147. Udawela M, Scarr E, Hannan AJ et al (2011) Phospholipase C beta 1 expression in the dorsolateral prefrontal cortex from patients with schizophrenia at different stages of illness. Aust N Z J Psychiatry 45:140–147

    PubMed  Google Scholar 

  148. Ross CA, MacCumber MW, Glatt CE, Snyder SH (1989) Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc Natl Acad Sci U S A 86:2923–2927

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Benes FM, Davidson J, Bird ED (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 43:31–35

    CAS  PubMed  Google Scholar 

  150. Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex: amorphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    CAS  PubMed  Google Scholar 

  151. Perez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C (2006) Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res 31:1279–1294

    CAS  PubMed  Google Scholar 

  152. Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:11–120

    Google Scholar 

  153. Zipursky RB, Lambe EK, Kapur S, Mikulis DJ (1998) Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatry 55:540–546

    CAS  PubMed  Google Scholar 

  154. Hulshoff Pol HE, Kahn RS (2008) What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 34:354–366

    PubMed Central  PubMed  Google Scholar 

  155. Cahn W, Rais M, Stigter FP et al (2009) Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 19:147–151

    CAS  PubMed  Google Scholar 

  156. Crespo-Facorro B, Roiz-Santianez R, Perez-Iglesias R et al (2010) White matter integrity and cognitive impairment in first-episode psychosis. Am J Psychiatry 167:451–458

    PubMed  Google Scholar 

  157. Zhang L, Yang H, Zhao H, Zhao C (2011) Calcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis. Neurochem Int 58:281–294

    CAS  PubMed  Google Scholar 

  158. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    CAS  PubMed  Google Scholar 

  159. Carlsson A, Waters N, Holm-Waters S et al (2001) Interactions between monoamines, glutamate and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    CAS  PubMed  Google Scholar 

  160. George SR, O’Dowd BF (2007) A novel dopamine receptor signaling unit in brain: heterooligomers of D1 And D2 dopamine receptors: mini-review. ScientificWorldJournal 7:58–63

    PubMed  Google Scholar 

  161. Ming Y, Zhang H, Long L et al (2006) Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J Neurochem 98:1316–1323

    CAS  PubMed  Google Scholar 

  162. Rashid AJ, So CH, Kong MM et al (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654–659

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172–1179

    CAS  PubMed  Google Scholar 

  164. Miguel-Hidalgo JJ, Rajkowska G (2002) Morphological brain changes in depression: can antidepressants reverse them? CNS Drugs 16:361–372

    CAS  PubMed  Google Scholar 

  165. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Cotter D, Mackay D, Landau S et al (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    CAS  PubMed  Google Scholar 

  168. Gittins RA, Harrison PJ (2011) A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord 133:328–332

    PubMed  Google Scholar 

  169. Cotter D, Mackay D, Chana G et al (2002) Everall reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394

    PubMed  Google Scholar 

  170. Czeh B, Simon M, Schmelting B et al (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 3:1616–1626

    Google Scholar 

  171. Gong Y, Sun XL, Wu FL et al (2012) Female early adult depression results in detrimental impacts on the behavioral performance and brain development in offspring. CNS Neurosci Ther 18:461–470

    PubMed  Google Scholar 

  172. Ye Y, Wang G, Wang H, Wang X (2011) Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression. Neurosci Lett 503:15–19

    CAS  PubMed  Google Scholar 

  173. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7

    CAS  PubMed  Google Scholar 

  174. Lo Vasco VR, Fabrizi C, Artico M et al (2007) Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 100:952–959

    CAS  PubMed  Google Scholar 

  175. Lo Vasco VR, Fabrizi C, Panetta B et al (2010) Expression pattern and subcellular distribution of phosphoinositide specific phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 110:1005–1012

    CAS  PubMed  Google Scholar 

  176. Lo Vasco VR, Fabrizi C, Fumagalli L, Cocco L (2010) Expression of phosphoinositide specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with lipopolysaccharide. J Cell Biochem 109:1006–1012

    CAS  PubMed  Google Scholar 

  177. Lo Vasco VR (2012) The phosphoinositide pathway and the signal transduction network in neural development. Neurosci Bull 28:789–800

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Rita Lo Vasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vasco, V.R.L. (2014). Phosphoinositide-Specific Phospholipase C Enzymes and Cognitive Development and Decline. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_14

Download citation

Publish with us

Policies and ethics