Skip to main content

Phospholipase C Isoform Functions in Immune Cells

  • Chapter
  • First Online:
  • 6338 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Phospholipase C (PLC) family members play critical roles in regulating immune cell functions during inflammatory responses. This chapter discusses how different family members can be activated by G-protein coupled receptors, T-cell receptors, B-cell receptors, and other tyrosine kinase receptors, in addition to many of the pathways that contribute to propagation of signaling through the intracellular signaling events that are mediated by different family members. By understanding these signaling events and immune mechanisms we will be able to better define targets for pharmacological intervention for inflammation and autoimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gilliland LK, Schieven GL, Norris NA et al (1992) Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLC γ1 SH2 domains. J Biol Chem 267:13610–13616

    CAS  PubMed  Google Scholar 

  2. Kanner SB, Reynolds AB, Wang HC et al (1991) The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated proteins p130 and p110. EMBO J 10:1689–1698

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Mohammadi M, Honegger AM, Rotin D et al (1991) A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C γ1. Mol Cell Biol 11:5068–5078

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Waksman G, Kominos D, Robertson SC et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine phosphorylated peptides. Nature 358:646–653

    CAS  PubMed  Google Scholar 

  5. Houtman JC, Higashimoto Y, Dimasi N et al (2004) Binding specificity of multi protein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry 43:4170–4178

    CAS  PubMed  Google Scholar 

  6. Vines CM (2012) Phospholipase C. Adv Exp Med Biol 740:235–254

    CAS  PubMed  Google Scholar 

  7. Nakahara M, Shimozawa M, Nakamura Y et al (2005) A novel phospholipase C, PLCη2, is a neuron-specific isozyme. J Biol Chem 280:29128–29134

    CAS  PubMed  Google Scholar 

  8. Zhou Y, Wing MR, Sondek J, Harden TK (2005) Molecular cloning and characterization of PLC-η2. Biochem J 391:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hajicek N, Charpentier TH, Rush JR et al (2013) Auto inhibition and phosphorylation-induced activation of phospholipase C-γ isozymes. Biochemistry 2013

    Google Scholar 

  10. Gresset A, Hicks SN, Harden TK, Sondek J (2010) Mechanism of phosphorylation-induced activation of phospholipase C-γ isozymes. J Biol Chem 285:35836–35847

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang J, Shehabeldin A, da Cruz LA et al (1999) Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein deficient lymphocytes. J Exp Med 190:329–1342

    Google Scholar 

  12. Kawakami T, Xiao W (2013) Phospholipase C-β in immune cells. Adv Biol Regul 53:249–257

    CAS  PubMed  Google Scholar 

  13. Bohdanowicz M, Schlam D, Hermansson M et al (2013) Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 24:1700–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Shen Y, Xu L, Foster DA (2001) Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 21:595–602

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Su W, Yeku O, Olepu S et al (2009) 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol 75:437–446

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK (2004) Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol 11:77–82

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Muller-Decker K (1989) Interruption of TPA-induced signals by an antiviral and anti tumoral xanthate compound: inhibition of a phospholipase C-type reaction. Biochem Biophys Res Commun 162:198–205

    CAS  PubMed  Google Scholar 

  18. Marasco WA, Fantone JC, Freer RJ, Ward PA (1983) Characterization of the rat neutrophil formyl peptide chemotaxis receptor. Am J Pathol 111:273–281

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Marasco WA, Showell HJ, Freer RJ, Becker EL (1982) Anti-f Met-Leu-Phe: similarities in fine specificity with the formyl peptide chemotaxis receptor of the neutrophil. J Immunol 128:956–962

    CAS  PubMed  Google Scholar 

  20. Fretland DJ, Widomski DL, Zemaitis JM et al (1989) Effect of a leukotriene B4 receptor antagonist on leukotriene B4-induced neutrophil chemotaxis in cavine dermis. Inflammation 13:601–605

    CAS  PubMed  Google Scholar 

  21. Schultz RM, Marder P, Spaethe SM et al (1991) Effects of two leukotriene B4 (LTB4) receptor antagonists (LY255283 and SC-41930) on LTB4-induced human neutrophil adhesion and superoxide production. Prostaglandins, Leukotrienes, and Essential Fatty Acids43:267–271

    CAS  PubMed  Google Scholar 

  22. Lawrence RH, Sorrell TC (1994) Eicosapentaenoic acid modulates neutrophil leukotriene B4 receptor expression in cystic fibrosis. Clin Exp Immunol 98:12–16

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lotner GZ, Lynch JM, Betz SJ, Henson PM (1980) Human neutrophil-derived platelet activating factor. J Immunol 124:676–684

    CAS  PubMed  Google Scholar 

  24. O’Donnell MC, Siegel JN, Fiedel BA (1981) Platelet activating factor: an inhibitor of neutrophil activation? Clin Exp Immunol 43:135–142

    PubMed Central  PubMed  Google Scholar 

  25. Chenoweth DE, Hugli TE (1980) Human C5a and C5a analogs as probes of the neutrophil C5a receptor. Mol Immunol 17:151–161

    CAS  PubMed  Google Scholar 

  26. Godaly G, Hang L, Frendeus B, Svanborg C (2000) Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol 165:5287–5294

    CAS  PubMed  Google Scholar 

  27. Li F, Gordon JR (2001) Il-8((3–73))K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochem Biophys Res Commun 286:595–600

    CAS  PubMed  Google Scholar 

  28. Gordon JR, Li F, Zhang X et al (2005) The combined CXCR1/CXCR2 antagonist CXCL8(3–74)K11R/G31P blocks neutrophil infiltration, pyrexia, and pulmonary vascular pathology in endotoxemic animals. J Leukoc Biol 78:1265–1272

    CAS  PubMed  Google Scholar 

  29. Ramos CD, Canetti C, Souto JT et al (2005) MIP-1 α [CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential release of TNF-α and LTB4. J Leukoc Biol 78:167–177

    CAS  PubMed  Google Scholar 

  30. Reichel CA, Khandoga A, Anders HJ et al (2006) Chemokine receptors Ccr1, Ccr2, and Ccr5 mediate neutrophil migration to postischemic tissue. J Leukoc Biol 79:114–122

    CAS  PubMed  Google Scholar 

  31. Rose JJ, Foley JF, Murphy PM, Venkatesan S (2004) On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 279:24372–24386

    CAS  PubMed  Google Scholar 

  32. Beauvillain C, Cunin P, Doni A et al (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117:1196–1204

    CAS  PubMed  Google Scholar 

  33. Boyer JL, Waldo GL, Harden TK (1992) βγ-subunit activation of G-protein-regulated phospholipase C. J Biol Chem 267:25451–25456

    CAS  PubMed  Google Scholar 

  34. Camps M, Carozzi A, Schnabel P et al (1992) Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360:684–686

    CAS  PubMed  Google Scholar 

  35. Camps M, Hou C, Sidiropoulos D et al (1992) Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur J Biochem 206:821–831

    CAS  PubMed  Google Scholar 

  36. Schnabel P, Camps M, Carozzi A et al (1993) Mutational analysis of phospholipase C-β2. Identification of regions required for membrane association and stimulation by guanine-nucleotide-binding protein beta gamma subunits. Eur J Biochem 217:1109–1115

    CAS  PubMed  Google Scholar 

  37. Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidylinositol specific phospholipase C β by G protein α and βγ subunits. J Biol Chem 268:9667–9674

    CAS  PubMed  Google Scholar 

  38. Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Li Z, Jiang H, Xie W et al (2000) Roles of PLC-β2 and -β3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287:1046–1049

    CAS  PubMed  Google Scholar 

  40. Xiao W, Kashiwakura J, Hong H et al (2011) Phospholipase C-β3 regulates Fcvar epsilonRI-mediated mast cell activation by recruiting the protein phosphatase SHP-1. Immunity 34:893–904

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cremasco V, Benasciutti E, Cella M et al (2010) Phospholipase C γ2 is critical for development of a murine model of inflammatory arthritis by affecting actin dynamics in dendritic cells. PLoS One 5:e8909

    PubMed Central  PubMed  Google Scholar 

  42. Cremasco V, Graham DB, Novack DV et al (2008) Vav/Phospholipase Cγ2-mediated control of a neutrophil-dependent murine model of rheumatoid arthritis. Arthritis Rheum 58:2712–2722

    PubMed Central  PubMed  Google Scholar 

  43. Fredholm B, Hogberg B, Uvnas B (1960) Role of phospholipase A and C in mast cell degranulation induced by non-purified Clostridium welchii toxin. Biochem Pharmacol 5:39–45

    CAS  PubMed  Google Scholar 

  44. Ting AT, Einspahr KJ, Abraham RT, Leibson PJ (1991) Fc γ receptor signal transduction in natural killer cells. Coupling to phospholipase C via a G protein-independent, but tyrosine kinase-dependent pathway. J Immunol 147:3122–3127

    CAS  PubMed  Google Scholar 

  45. Ting AT, Karnitz LM, Schoon RA et al (1992) Fc γ receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-γ1 and PLC-γ2 in natural killer cells. J Exp Med 176:1751–1755

    CAS  PubMed  Google Scholar 

  46. Whalen MM, Doshi RN, Homma Y, Bankhurst AD (1993) Phospholipase C activation in the cytotoxic response of human natural killer cells requires protein-tyrosine kinase activity. Immunology 79:542–547

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang D, Feng J, Wen R et al (2000) Phospholipase C γ2 is essential in the functions of B cell and several Fc receptors. Immunity 13:25–35

    PubMed  Google Scholar 

  48. Mueller H, Stadtmann A, Van Aken H et al (2010) Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kgamma pathways. Blood 115:3118–3127

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Brady HR, Spertini O, Jimenez W et al (1992) Neutrophils, monocytes, and lymphocytes bind to cytokine-activated kidney glomerular endothelial cells through L-selectin (LAM-1) in vitro. J Immunol 149:2437–2444

    CAS  PubMed  Google Scholar 

  50. Erlandsen SL, Hasslen SR, Nelson RD (1993) Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high resolution field emission SEM. J Histochem Cytochem 41:327–333

    CAS  PubMed  Google Scholar 

  51. Furie MB, Burns MJ, Tancinco MC et al (1992) E-selectin (endothelial leukocyte adhesion molecule-1) is not required for the migration of neutrophils across IL-1-stimulated endothelium in vitro. J Immunol 148:2395–2404

    CAS  PubMed  Google Scholar 

  52. Torok C, Lundahl J, Hed J, Lagercrantz H (1993) Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child 68:561–565

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    CAS  PubMed  Google Scholar 

  54. Zhang J, Berenstein EH, Evans RL, Siraganian RP (1996) Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med 184:71–79

    CAS  PubMed  Google Scholar 

  55. Bach MK, Bloch KJ, Austen KF (1971) IgE and IgGa antibody-mediated release of histamine from rat peritoneal cells. I. Optimum conditions for in vitro preparation of target cells with antibody and challenge with antigen. J Exp Med 133:752–771

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Bach MK, Block KJ, Austen KF (1971) IgE and IgGa antibody-mediated release of histamine from rat peritoneal cells. II. Interaction of IgGa and IgE at the target cell. J Exp Med 133:772–784

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Orange RP, Stechschulte DJ, Austen KF (1970) Immunochemical and biologic properties of rat IgE. II. Capacity to mediate the immunologic release of histamine and slow-reacting substance of anaphylaxis (SRS-A). J Immunol 105:1087–1095

    CAS  PubMed  Google Scholar 

  58. Blank U, Ra C, Miller L et al (2000) Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 337:187–189

    Google Scholar 

  59. Donnadieu E, Jouvin MH, Kinet JP (2000) A second amplifier function for the allergy associated Fc(ε)RI-β subunit. Immunity 12:515–523

    CAS  PubMed  Google Scholar 

  60. Kuster H, Thompson H, Kinet JP (1990) Characterization and expression of the gene for the human Fc receptor γ subunit. Definition of a new gene family. J Biol Chem 265:6448–6452

    CAS  PubMed  Google Scholar 

  61. Lin J, Weiss A (2001) Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem 276:29588–29595

    CAS  PubMed  Google Scholar 

  62. Ortega E, Lara M, Lee I et al (1999) Lyn dissociation from phosphorylated Fc ε RI subunits: a new regulatory step in the Fc ε RI signaling cascade revealed by studies of Fc ε RI dimer signaling activity. J Immunol 162:176–185

    CAS  PubMed  Google Scholar 

  63. Vonakis BM, Gibbons SP Jr, Rotte MJ et al (2005) Regulation of rat basophilic leukemia-2H3 mast cell secretion by a constitutive Lyn kinase interaction with the high affinity IgE receptor (Fc epsilon RI). J Immunol 175:4543–4554

    CAS  PubMed  Google Scholar 

  64. Wang AV, Scholl PR, Geha RS (1994) Physical and functional association of the high affinity immunoglobulin G receptor (Fc γ RI) with the kinases Hck and Lyn. J Exp Med 180:1165–1170

    CAS  PubMed  Google Scholar 

  65. Scharenberg AM, Lin S, Cuenod B et al (1995) Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. EMBO J 14:3385–3394

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wilson BS, Pfeiffer JR, Surviladze Z et al (2001) High resolution mapping of mast cell membranes reveals primary and secondary domains of Fc(ε)RI and LAT. J Cell Biol 154:645–658

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhang J, Berenstein E, Siraganian RP (2002) Phosphorylation of Tyr342 in the linker region of Syk is critical for Fc ε RI signaling in mast cells. Mol Cell Biol 22:8144–8154

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Forster R, Schubel A, Breitfeld D et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    CAS  PubMed  Google Scholar 

  69. Shannon LA, Calloway PA, Welch TP, Vines CM (2010) CCR7/CCL21 migration on fibronectin is mediated by phospholipase C γ1 and ERK1/2 in primary T lymphocytes. J Biol Chem 285:38781–38787

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kremer KN, Clift IC, Miamen AG et al (2011) Stromal cell-derived factor-1 signaling via the CXCR4-TCR heterodimer requires phospholipase C-β3 and phospholipase C-γ1 for distinct cellular responses. J Immunol 187:1440–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1:23–29

    CAS  PubMed  Google Scholar 

  72. Grakoui A, Bromley SK, Sumen C et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    CAS  PubMed  Google Scholar 

  73. DeFord-Watts LM, Dougall DS, Belkaya S et al (2011) The CD3 ζ subunit contains a phosphoinositide binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–6847

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Gharbi SI, Rincon E, Avila-Flores A et al (2011) Diacylglycerol kinase ζ controls diacylglycerol metabolism at the immunological synapse. Mol Biol Cell 22:4406–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Holdorf AD, Lee KH, Burack WR et al (2002) Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3:259–264

    CAS  PubMed  Google Scholar 

  76. Li QJ, Dinner AR, Qi S et al (2004) CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol 5:791–799

    CAS  PubMed  Google Scholar 

  77. Tavano R, Gri G, Molon B et al (2004) CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 173:5392–5397

    CAS  PubMed  Google Scholar 

  78. Zhang W, Sloan-Lancaster J, Kitchen J et al (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92

    CAS  PubMed  Google Scholar 

  79. Bubeck Wardenburg J, Fu C, Jackman JK et al (1996) Phosphorylation of SLP-76 by the ZAP-70 protein tyrosine kinase is required for T-cell receptor function. J Biol Chem 271:19641–19644

    CAS  PubMed  Google Scholar 

  80. da Silva AJ, Raab M, Li Z, Rudd CE (1997) TcR zeta/CD3 signal transduction in T-cells: downstream signalling via ZAP-70, SLP-76 and FYB. Biochem Soc Trans 25:361–366

    PubMed  Google Scholar 

  81. Raab M, da Silva AJ, Findell PR, Rudd CE (1997) Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR zeta/CD3 induction of interleukin-2. Immunity 6:155–164

    CAS  PubMed  Google Scholar 

  82. Paz PE, Wang S, Clarke H et al (2001) Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J 356:461–471

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Stoica B, DeBell KE, Graham L et al (1998) The amino-terminal Src homology 2 domain of phospholipase C γ1 is essential for TCR induced tyrosine phosphorylation of phospholipase C γ1. J Immunol 160:1059–1066

    CAS  PubMed  Google Scholar 

  84. Zhang W, Trible RP, Zhu M et al (2000) Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J Biol Chem 275:23355–23361

    CAS  PubMed  Google Scholar 

  85. June CH, Fletcher MC, Ledbetter JA, Samelson LE (1990) Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J Immunol 144:1591–1599

    CAS  PubMed  Google Scholar 

  86. Bubb MR, Senderowicz AM, Sausville EA et al (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–14871

    CAS  PubMed  Google Scholar 

  87. Babich A, Li S, O’Connor RS et al (2012) F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T cell activation. J Cell Biol 197:775–787

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Chitadze G, Bhat J, Lettau M et al (2013) Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol 78:120–129

    CAS  PubMed  Google Scholar 

  89. Zafirova B, Wensveen FM, Gulin M, Polic B (2011) Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci 68:3519–3529

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Diefenbach A, Hsia JK, Hsiung MY, Raulet DH (2003) A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 33:381–391

    CAS  PubMed  Google Scholar 

  91. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    CAS  PubMed  Google Scholar 

  92. Yin S, Zhang J, Mao Y et al (2013) Vav1-phospholipase C-γ1 (Vav1-PLC-gamma1) pathway initiated by T cell antigen receptor (TCR gamma delta) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδ T cell cytotoxicity. J Biol Chem 288:26448–26462

    CAS  PubMed  Google Scholar 

  93. Kim HS, Das A, Gross CC et al (2010) Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32:175–186

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Upshaw JL, Schoon RA, Dick CJ et al (2005) The isoforms of phospholipase C-γ are differentially used by distinct human NK activating receptors. J Immunol 175:213–218

    CAS  PubMed  Google Scholar 

  95. Caraux A, Kim N, Bell SE et al (2006) Phospholipase C-γ2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood 107:994–1002

    CAS  PubMed  Google Scholar 

  96. Chen X, Trivedi PP, Ge B et al (2007) Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci U S A 104:6329–6334

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Conejo-Garcia JR, Benencia F, Courreges MC et al (2003) A tumor-associated NKG2D immunoreceptor ligand, induces activation and expansion of effector immune cells. Cancer Biol Ther 2:446–451

    CAS  PubMed  Google Scholar 

  98. Hidano S, Sasanuma H, Ohshima K et al (2008) Distinct regulatory functions of SLP-76 and MIST in NK cell cytotoxicity and IFN-γ production. Int Immunol 20:345–352

    CAS  PubMed  Google Scholar 

  99. Banno Y, Okano Y, Nozawa Y (1994) Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-δ1. J Biol Chem 269:15846–15852

    CAS  PubMed  Google Scholar 

  100. Fukami K, Takenaka K, Nagano K, Takenawa T (2000) Growth factor-induced promoter activation of murine phospholipase C δ4 gene. Eur J Biochem 267:28–36

    CAS  PubMed  Google Scholar 

  101. Ochocka AM, Pawelczyk T (2003) Isozymes δ of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol 50:1097–1110

    CAS  PubMed  Google Scholar 

  102. Li M, Edamatsu H, Kitazawa R et al (2009) Phospholipase C ε promotes intestinal tumorigenesis of Apc(Min/+) mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30:1424–1432

    CAS  PubMed  Google Scholar 

  103. Matsuda S, Shibasaki F, Takehana K et al (2000) Two distinct action mechanisms of immunophilin-ligand complexes for the blockade of T-cell activation. EMBO Rep 1:428–434

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Powell JD, Zheng Y (2006) Dissecting the mechanism of T-cell allergy with immunophilin ligands. Curr Opin Investig Drugs 7:1002–1007

    CAS  PubMed  Google Scholar 

  105. Citro S, Malik S, Oestreich EA et al (2007) Phospholipase C ε is a nexus for Rho and Rap-mediated G protein-coupled receptor induced astrocyte proliferation. Proc Natl Acad Sci U S A 104:15543–15548

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Xiao W, Hong H, Kawakami Y et al (2009) Tumor suppression by phospholipase C-β3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 16:161–171

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340

    CAS  PubMed  Google Scholar 

  108. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    CAS  PubMed  Google Scholar 

  109. Abe K, Fuchs H, Boersma A et al (2011) A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase C γ2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. Arthritis Rheum 63:1301–1311

    CAS  PubMed  Google Scholar 

  110. Yu P, Constien R, Dear N et al (2005) Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C γ2 that specifically increases external Ca2+ entry. Immunity 22:451–465

    PubMed  Google Scholar 

  111. Ombrello MJ, Remmers EF, Sun G et al (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366:330–338

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Everett KL, Bunney TD, Yoon Y et al (2009) Characterization of phospholipase C γ enzymes with gain-of-function mutations. J Biol Chem 284:23083–23093

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Bunney TD, Esposito D, Mas-Droux C et al (2012) Structural and functional integration of the PLC gamma interaction domains critical for regulatory mechanisms and signaling deregulation. Structure 20:2062–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhou Q, Lee GS, Brady J et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase C γ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91:713–720

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Hu L, Edamatsu H, Takenaka N et al (2010) Crucial role of phospholipase C epsilon in induction of local skin inflammatory reactions in the elicitation stage of allergic contact hypersensitivity. J Immunol 184:993–1002

    CAS  PubMed  Google Scholar 

  116. Borst J, van de Griend RJ, van Oostveen JW et al (1987) A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325:683–688

    CAS  PubMed  Google Scholar 

  117. Oettgen HC, Kappler J, Tax WJ, Terhorst C (1984) Characterization of the two heavy chains of the T3 complex on the surface of human T lymphocytes. J Biol Chem 259:12039–12048

    CAS  PubMed  Google Scholar 

  118. Love PE, Shores EW, Johnson MD et al (1993) T cell development in mice that lack the zeta chain of the T cell antigen receptor complex. Science 261:918–921

    CAS  PubMed  Google Scholar 

  119. Weissman AM, Baniyash M, Hou D et al (1988) Molecular cloning of the ζ chain of the T cell antigen receptor. Science 239:1018–1021

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a startup award through the Texas STARS program to CMV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte M. Vines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vines, C.M. (2014). Phospholipase C Isoform Functions in Immune Cells. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_13

Download citation

Publish with us

Policies and ethics